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The nonsymmetric eigenvalue problem Ax = 1Bx is discussed with special emphasis on 
linear algebra theory, on algorithms implemented for solving large-scale systems, and on inter- 
preting complex spectra obtained in applications from physics and engineering. Present-day 
supercomputers make the required matrix computations feasible, especially in view of the 
increase in memory. 0 1989 Academic Press, Inc. 
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1. INTRODUCTION 

Eigenvalue problems constitute an important branch of linear algebra; the study 
of linearized motion yields fundamental knowledge on stability, heating, and wave 
propagation. Closely related to the eigenproblem is the solution of systems of linear 
equations, which eventually evolve in most computational schemes. 

These two aspects, namely access to basic physics phenomena itself and general 
use of the routines in numerical simulations, are thus considered to be equally 
important and are both stressed here. Eigenproblems are seen in the context of 
computational physics, which combines the understanding and the skills of very 
different disciplines, such as mathematics, physics, and engineering, numerical 
analysis, programming, and, last but not least, software and hardware. 
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Feedback of numerical results into theoretical modelling makes computing an 
indispensable tool for science. This article, dedicated to the eigenvalue problem, 
addresses a classical topic of numerical analysis. It is therefore not intended here to 
convey the impression of presenting the first thorough or the final discussion in this 
field. Rather, there exist many publications with similar titles, which, incidentally, 
the author finds very stimulating. 

To put it briefly, the author wants to say: “Complex eigenvalue problems are 
both feasible and worth the effort!” Furthermore, it is hoped to stimulate future 
work in this area. This message is necessarily based on the author’s own views and 
experience, which has governed the selection of the material, with specific emphasis 
on theory, algorithms, and applications. The phrase “large-scale” used in the title 
stands for the maximum computational work that is feasible on present-day super- 
computers. Clearly, this maximum is continuously changing, but in the good sense 
that it allows treatment of increasingly larger problems. 

The recent increase in computing power with respect to both speed and storage 
provides an excellent frame for focussing on the nonsymmetric eigenvalue problem 
and on matrix computations in general. 

To be more specific now, let us consider the operator L which maps a vector- 
space onto itself. If there are special nonzero vectors x with the property that Lx 
is parallel to x, the eigenvalue equation Lx = Lx arises. The proportionality factor 
A is called the eigenvalue and x the eigenvector. The set of eigenvalues yields the 
spectrum of L. This spectrum is in general complex and can be discrete or 
continuous. In quantum mechanics the observables of a system are represented by 
Hermitian operators. These operators can be diagonalized by unitary transforma- 
tions. The beautiful theory of quantum mechanics has made all of us familiar with 
spectral theory. The symmetric eigenvalue problem-well covered in many books 
and monographs-is therefore included in this discussion. The emphasis, however, 
is on the nonsymmetric eigenproblem, which is still by no means standard. This 
step leads us from a well-founded field into new areas. While the symmetric matrix 
can always be diagonalized, there are immediate obstacles to nonsymmetric 
operators. The best one can do is obtain the Jordan canonical form. The corre- 
sponding Jordan sub-blocks have fewer independent eigenvectors than eigenvalues 
and are therefore called defective. 

Unfortunately, the reduction to canonical form is numerically unstable. Will the 
assumption of nondefective matrices exclude significant problems? In the author’s 
experience in solving partial differential equations, it does not. 

By following the practical approach-without proof-valuable information has 
been gained in all cases. The immediate question is: do complex eigenvalues emerge 
in relevant problems? Since practically all systems taken from the real world 
contain dissipation, the corresponding operators include dissipation yielding non- 
Hermitian matrices. Put briefly, the vast majority of problems are of non- 
variational form. It must be pointed out, however, that analytic theory based on 
approximations using ideal models has produced interesting solutions. 

An important fact involved is the completeness of the solution space of Hermitian 
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operators. Nevertheless, the conclusion that many non-variational problems need to 
be solved is correct. Especially, normal-mode analysis of dissipative systems 
provides significant and fundamental knowledge. It is somewhat surprising that 
such complex oscillation frequencies are not yet of the most relevance for industrial 
applications in connection with resonance phenomena and stability questions. 

These introductory remarks serve to outline the topics discussed in this article. In 
Section 2 the basics of linear algebra, necessary for solving linear systems and eigen- 
problems, are presented. The proofs of the theorems have been dispensed with. The 
matrices which occur in dissipative systems do not satisfy, in most cases, the condi- 
tions for iterative solutions. The discussion is therefore restricted to direct methods 
such as Gaussian elimination and LU factorization. A subsection is devoted to the 
question where eigenvalues are located in the complex plane, stability included. 

Algorithms for solving the eigenvalue problem are discussed in Section 3. The 
routines for general matrices-available in EISPACK and LINPACK-are 
described only briefly, whereas the schemes suitable for large-scale problems by 
preserving the sparseness of the matrices are described in great detail. Vector itera- 
tion, Lanczos methods, and Rayleigh quotient iteration yield the most important 
and most widely used algorithms. In each case, both the Hermitian and the non- 
Hermitian problem is treated. The shooting method has been completely omitted 
here, the emphasis is on large-scale matrix computations. Such schemes 
include-with only minor modifications in the code-implicit initial-value formula- 
tion as well as the response to an external force. Nonlinear eigenproblems are 
addressed at the end of this section, followed by considerations concerning software 
and hardware. 

Applications are presented in Section 4. Self-adjoint eigenproblems are discussed 
in quantum mechanics. The computations based on finite elements in one, two, and 
three dimensions yield interesting results and might be applied in some form to the 
real large-scale computations for molecular spectra. For illustration, some non- 
Hermitian eigenproblems are pointed out. The discussion of engineering and fluid 
dynamics serves as illustration for the occurrence of damped oscillation or over- 
stable motion. 

On these fields there is a vast amount of literature that cannot be covered. The 
most detailed discussion of a dissipative spectrum is performed in plasma physics, 
being described by the macroscopic model. To facilitate understanding of the 
results, an extended introduction to the physics is given. The spectra have a rich 
structure and contain surprises. The entire spectrum has been resolved, bringing us 
back to the question of the meaning (e.g., completeness) of the dissipative spectrum. 

Section 5 presents a discussion and summary. Finally, the need for optimized 
software, to be developed on the present and next generation supercomputers, is 
re-addressed. 
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2. LINEAR ALGEBRA 

Let A be a given square matrix. The two fundamental problems of linear algebra 
are: 

(i) solving the linear system of equations Ax = b, 

(ii) solving the eigenvalue problem Ax = lx. 

A. General Theory 

We refer to some convention of notation to which we have adhered and intro- 
duce some necessary definitions. Details of the theory can be found in the excellent 
books of Wilkinson, Parlett, and Golub and van Loan (Refs. [l-3]). 

Let [w (C) denote the field of real (complex) numbers. With AE@ the complex 
conjugate is X. [w”“” (Cm ’ “) denotes the vector space of all m by n real (complex) 
matrices: 

AEIR~~“(@~~~)--A=(~,), 1 <i<m, 1 <j<n. 

The identity matrix is denoted by Z, and its elements by the Kronecker symbol 
6,. If AEC~~, then its conjugate transpose AH is defined by AH = (a,). We say 
that A E C” x” is unitary if AHA = Z, Hermitian if AH = A, and positive definite if 
xHAx > 0 for all nonzero x E C”. Matrices that satisfy AHA = AAH are called 
normal. 

Linear systems of equations where the matrix is triangular are particularly simple 
to solve. The system Rx = b, where R is upper triangular is solved by 

n 
1 rikxk 

>i 
rii, i=n,n-1 1. > ..., (2.1) 

k=i+l 

This algorithm is called back substitution. 
A system which is lower triangular is solved by forward substitution: 

i-l 

Xi= bi- C l&xk li,, i = 1, 2, . . . . n. 
k=l 

This algorithm takes n2/2 flops on the computer. 
Of special importance is the LU theorem. 

(2.2) 

THEOREM 1 (LU theorem). Let A E Cnx “, with A, E Ck x k formed by the intersec- 
tion of the first k rows and columns in A. Zf det(A,) #O for k= 1, 2, . . . . n- 1, then 
there exists a unique lower triangular matrix L and unit upper triangular matrix U 
so that A = LU (or A = L AU when normalized triangular factors are used). 
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COROLLARY. If AEC~~ is Hermitian, then the decomposition is A = LLH (or 
A = L ALH). If A is Hermitian, positive-definite, this factorization may be written 
A = (LA ‘I*)( LA 1’2)H = EZH and is called the Cholesky decomposition. 

An important property of the LU factorization is the conservation of the band 
structure. If A E @” xn has an LU decomposition A = LU and if A has an upper 
band width q and lower band width p, then U has an upper band width q and L 
a lower band widthp. 

Several transformations are used for solving linear systems, namely the 
Householder transformation, Given’s rotation, and the Gauss transformation. 

B. Solving Linear System of Equations 

Essentially, there are two different classes of methods: direct solution techniques 
and iterative solution methods. Two reasons cause us to consider only direct 
methods: First, the spectra studied in MHD are so complex that iteration proce- 
dures have failed so far and, second, present-day supercomputers make large-scale 
systems tractable. 

Let A possess an LU factorization. Gauss transformations can then be found 
such that 

M n-1 . ..M*M.A=MA=U 

is upper triangular. The original problem Ax = b is equivalent to Ux = Mb, which 
can be solved via back-substitution. We can immediately give the Gauss transfor- 
mation 

Mk = I- ack)eH 
k, 

with ek the kth column of Z and 

dk) = (0, . . . . 0, fk + I,k, . . . . /,k)T, 

a$-‘) 
lik = - (k-1) for 

akk 
aK-“#O; i=k+ 1, . . . . m. 

The updated matrix is then 

a!!) = a!!- ‘) - l,aG- I), rl r/ i=k+l,...,m; j=k,k+l 

To summarize the results, it is obvious that 

n-1 
M -’ = n (I+ a”‘e”) = I+ (a”), cd*), . . . . a(“-‘)) 

i=l 

. . 

(2.31 

(2.41 

‘., m. (2.5) 

is lower triangular. Hence we have constructed the LU decomposition, since 
A = M -‘lJ. This algorithm requires n3/3-flops. 
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The elements aitl, which appear during the elimination, are called pivotal 
elements. This form of Gaussian elimination is unstable because of the possibility 
of arbitrarily small pivots. This numerical instability can be avoided by determining 
permutation matrices such that the leading entry is acceptably large. 

The Gaussian elimination with complete pivoting is stable. In order to avoid 
numerical overheads, the algorithm is usually performed by using partial pivoting, 
where only row interchanges are performed. If the matrix A is perfectly general, 
then the volume of computation for Gauss elimination and triangularization with 

i Gauss transformations is ?n 3 flops. The class of Hermitian, positive-definite 
matrices exhibits numerical stability in the pivoting for its Cholesky decomposition. 
This factorization takes n3/6 flops. 

C. Eigenvalue Problems 

The general eigenvalue problem 

Ax = J.Bx (2.6) 

with A, BE Cnxn, where A is a general and B a Hermitian, positive-definite matrix, 
requires determination of values L E @ such that the linear system 

(A-IB)x=O (2.7) 

has a non-trivial solution x # 0, x E C”; 1 is called the eigenvalue and x the (right- 
hand) eigenvector. In the case where B is the identity Z, Eq. (2.6) reduces to the 
standard eigenvalue problem 

Ax = Ilx. (2.6b) 

Since B is positive-definite, the inverse exists and the general problem can be 
reduced to the standard case by 

B - ‘Ax = Ux. (2.6~) 

For the symmetric eigenvalue problem the matrix B-‘A will not be symmetric. 
However, B can be factored B = LL”. B-‘A is a similar to the matrix 
G = LL’AL-“. The resulting eigenproblem 

Gx=Ax (2.8) 

is again symmetric, G” = G, but sparseness is lost. If the structure of the matrices 
A and B is to be preserved, the general eigenproblem has to be solved in the form 
of (2.6) and not (2.6~) or (2.8). A non-trivial solution exists if, and only if, the 
matrix (A - 2s) is singular, i.e., 

det(A - 2s) = 0. (2.9) 
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This determinant yields a polynomial equation of order n, the characteristic 
polynomial p(l). If we can factor (A-LB) as (A-1B) = L dU, it follows that 
p(A)=ny=, d,=O. 

If the matrix (A-IB) is of rank less than (n- l), then there will be more than 
one eigenvector satisfying Eq. (2.7). The Hermitian conjugate matrix satisfies the 
eigenvalue equation AHz = XBz, since det(AH - LB) = 0. Owing to 

z”A = Iz”B, (2.10) 

zH is called the left-hand eigenvector. For Ji# Aj it holds that the inner product 
vanishes, 

xyBzj=O (2.11) 

and has non-zero value for i=j. With proper normalization the relation 

x”Bzi= 1 (2.11b) 

holds. 

C.l. Standard Eigenvalue Problem Ax = 1x 

Let us first consider the standard eigenvalue problem, to which any generalized 
eigenvalue problem can be reduced if conservation of the structure is not aimed for. 
The first important question is: Is the computation of eigenvalues and eigenvectors 
of A a well-posed problem? The transform H -‘AH of the matrix, where H is 
non-singular, leaves the eigenvalue invariant, which is seen from the determinant 

det( H -‘(A - 11) H) = det(A - AI). 

A and H -‘AH are said to be similar; A + H -‘AH is called a similarity transform. 
If the eigenvalues of A are distinct, the relations Ax,= &xi, i= 1, 2, . . . . n, can be 
written as AX = diag(&)X, where the matrix X has the xi as its columns. 

From Eq. (2.11b) it s seen that the inverse of X exists and is equal to ZH. It thus 
follows that 

X-‘AX = ZHAX = diag(&). (2.12) 

The eigenvalues are invariant to a similarity transformation and the eigenvectors 
are multiplied by H -‘. Many of the methods for solving the eigensystem of a 
matrix therefore consist in determining a similarity transformation which reduces a 
matrix of general form to one of special form. It is noted that similarity is a 
transitive property. 

If the matrix A has one or more multiple eigenvalues and if there exists still a 
similarity transformation which reduces A to diagonal form, then det(A - AZ) = 
~i=,...~(~-J.i) and H-‘AH=diag(il,)=n. 
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The columns of H are the eigenvectors of A. Since H is non-singular, its columns 
are independent and a set of eigenvectors can be found which span the whole 
n-space and can thus be used as a base. However, not all matrices with multiple 
eigenvalues have this property. The matrix 

C,Cal= 0” 1, ( ) 
(2.13) 

has the double eigenvalue I = a, but only one eigenvector xi,* = e,. Although I = a 
is a double eigenvalue-its algebraic multiplicity is two-it has only a one-dimen- 
sional space of eigenvectors. The geometric multiplicity of this eigenvalue is one and 
we cannot construct the diagonalizing matrix H. More generally, matrices defined 
as 

(2.14) 

with the eigenvalue A= a of multiplicity r but with only one eigenvector e, are 
called Jordan submatrices. A matrix with fewer than n independent eigenvectors is 
called defective. We reformulate our question to “what is the most compact form 
to which a matrix can be reduced by similarity transformation?” The result is given 
by the Jordan canonical form. 

THEOREM 2. Let A E Cnxn be a matrix with r distinct eigenvalues A,, I,, . . . . A, 
with multiplicities m,, m,, . . . . m,, so that C:=, mj = n, then there exists a non- 
singular X E C:” x ” such that Xp’AX = diag(C,,(A,), Cm*(&), . . . . Cm,(&)). 

Unfortunately, the Jordan block structure of a defective matrix is very difficult to 
determine numerically. 

It is clear now that A E Cxxn is non-defective if, and only if, there exists a 
non-singular X E C” x ’ such that Xp’AX = diag(l,, . . . . A,). Our first question has 
the (numerically favourable) answer that every matrix can be reduced to triangular 
form. This is given by 

THEOREM 3 (Schur decomposition). Zf A E CHx “, then there exists a unique 
unitary 0 E C” xn such that 

with multiple eigenvalues being possible. 
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COROLLARY. AcC”” is normal if, and only if, there exists a unitary QE UZnx” 
such that QHAQ = diag(i,, . . . . I,). 

C.2. Generalized Eigenvalue Problem Ax = IBx 

The generalized eigenvalue problem can be solved by applying the following 
result: 

THEOREM 4 (Generalized Schur decomposition). Zf A, B E Px “, then there exist 
unitary Q and Z such that QHAZ = T and QHBZ = S are upper triangular and 

det(A - IB) = det(QZH) fi (tii- kii). 
i=l 

Zf A, BER”~” are real, then there exist orthogonal matrices Q and 2 such that 
Q’AZ is upper quasi-triangular and OTB2 is upper triangular. 

C.3. Hermitian Eigenvalue Problem 

The Hermitian case has all the good properties needed to ensure successful 
numerical evaluation, since a Hermitian matrix cannot be defective and since a 
small perturbation in the matrix causes only a small perturbation in the eigen- 
values. Again the generalized problem is considered. For A E Cflxn with AH = A 
there exists a unitary matrix U such that UHAU = diag(I,, . . . . I,,). This follows 
from the corollary of Theorem 3. All eigenvalues are real; the eigenvector may still 
be complex for complex A. If preferred, A may be replaced by a real symmetric 
matrix A of twice the order. The eigenvectors yield an orthogonal set 

x” Bxj = 6,. (2.15) 

This property also holds for multiple eigenvalues 

Ax; = &Bx;, v = 1) 2, . ..) N, 

which leads to the orthogonality relation 

(~1)~ B(x;) = 6,6,,. (2.15b) 

The eigenfunctions of a Hermitian operator yield a complete set of basis 
functions. The inertia of a Hermitian matrix A is the triplet of integer (p, <, m), 
where p, 5, m are the numbers of positive, zero, and negative eigenvalues of A, 
respectively. For Hermitian matrices Sylvester’s theorem indicates a direct way to 
compute the inertia. 

THEOREM 5 (Sylvester’s inertia theorem). Zf A E C” x ’ is Hermitian and S E C” x ’ 
is non-singular, then A and SHAS have the same inertia. 
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We have already seen that there exists a Schur decomposition QHAQ which 
diagonalizes A. If the LU decomposition is performed A = L ALH, then A directly 
yields the inertia of A. Since the LU factorization preserves the band width of A, 
this is a powerful tool for sparse, symmetric matrices. 

For a given non-zero vector II EC” the Rayleigh quotient 

uHAu 
P(X)=~ (2.16) 

is stationary at, and only at, the eigenvectors of A. Combined with inverse vector 
iteration Rayleigh quotient iteration can be used to compute selected eigenvalues 
and eigenvectors. 

The general linear eigenvalue problem can be reduced to standard form, where 
symmetry is preserved but sparseness is lost. It is therefore tempting to diagonalize 
both A and B by unitary transformations. This is guaranteed by the 

THEOREM 6. If B is positive-definite, then there exist non-singular matrices S, 
such that 

SHAS = diag(a,, a*, . . . . a,), 

SHBS = diag(b,, b,, . . . . b,), 

and Izi = ai/bi, i = 1, 2, . . . . n, are the eigenvalues. 

D. Location of Eigenvalues 

For the symmetric eigenvalue problem Sylvester’s inertia theorem in conjunction 
with a L ALH decomposition yields valuable insight into the spectrum considered. 
This, combined with appropriate shifts, yields the number of eigenvalues within a 
certain interval. Since the LU factorization preserves the bandwidth, this technique 
is in fact applied through bisection in large-scale computations. Naturally, we want 
to know whether similar estimates on the distribution of eigenvalues can be 
obtained in the non-symmetric problem. Unfortunately, there is no analogue of 
Sylvester’s theorem for complex eigenvalues. However, some knowledge can be 
obained by other means. Let us discuss their relevance to large-scale computations. 

The question of the stability of a given system is an important application. The 
system i(t)=Au, u(O)=u,, leads to the standard eigenvalue problem with the 
ansatz u(t) = e”‘u. There exist exponentially growing instabilities if there is a 2 E @ 
with Re 1> 0, since eAr = eRe”‘e”““‘. 

We can derive a quantity whose sign decides between growth and decay of the 
system by means of the derivative of the inner product, 



LARGE-SCALE COMPLEX EIGENVALUE PROBLEMS 11 

and find by setting x = y that 

f IIx(~)~~~ = xH(A + AH)x. (2.17) 

If this expression is less than zero for all x E C”, i.e., every eigenvalue of (A + AH) 
is negative, the system is stable. 

To find a condition which is both necessary and sufficient for stability, there are 
two possibilities, namely the Routh-Hurwitz theorem and the approach by 
Ljapunov. The first criterion is not suited for matrix computations. The discussion 
of the Ljapunov form is now connected with the inertia. The definition of the inertia 
of a matrix can be extended to general matrices, if m, z, q denote the numbers of 
eigenvalues with Re Ai < 0, Re Ai = 0, or Re A, > 0, respectively. 

In order to allow for and include defective matrices, this definition is extended: 
In (A) = (4 4, 4, r), 

Z+u,+u,+r=n, 

where I (resp. r) is the number of eigenvalues li with Re &-CO (resp. Re &>O); ur 
(u2) denote the number of eigenvalues with Re iii = 0 having linear independent 
(dependent) eigenvectors. Then the system is asymptotically, i.e., t + co, stable, if 
I = n, marginally stable for u 1 > 0 but 1 + u I = II, and unstable for u2 + r > 0. 

Of interest is 

THEOREM 7 (Ljapunov’s theorem). The eigenualues of A E C” xn have Re Izi < 0 g 
and onZy zf, the Hermitian matrix V E Cnxn is positive-definite, where V = VH 
satisfies the relation 

AHV+VA= -E, E=EH~@nxn (2.18) 

for a giuen positiue-semidefinite matrix E. 

This theorem has the interesting consequence that the stability of a general 
matrix can be determined by the eigenvalues of a Hermitian matrix. However, it is 
not clear that this scheme is useful for large-scale computation. Let A be a general, 
banded matrix. The problem is then as follows: Find a suitable E such that the 
matrix V defined by Eq. (2.18) has a similar band structure. The inertia of V can 
then be efficiently computed. Otherwise, we may apply the QR directly to the 
matrix A, since not much is gained by determining a full matrix V. An appropriate 
Ljapunov matrix has been found on physical grounds by Tasso and Virtamo [S] 
and been solved numerically by Kerner and Tasso [69]. The inertia algorithm 
recently proposed by B. N. Datta and K. Data [lo] transforms A into a lower 
Hessenberg matrix by orthogonal similarity. The inertia of A is finally obtained by 
applying Jacobi’s method for finding the inertia of a Hermitian matrix. The total 
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operations count is yn’ and abour two to three times faster than QR. The eigen- 
value solver is, however, well optimized on a vector computer, see Fig. 3.1, and still 
appears superior to this scheme. Iterative methods are discussed in the book of 
Miiller [69] and are not pursued further here. 

Our result concerning stability by applying the matrix (A” + A) can be con- 
nected with the Ljapunov theorem. If all eigenvalues of (A” + A) satisfy Re & < 0, 
i.e., -(A + A”) is positive-definite, we can choose E as E = -(A” + A) and V as 
the identity matrix. Stability then follows, 

We found the initial value procedure for determining the instabilities of the 
system to be most efficient. The time derivative x is kept and x(1,), CI = 1, 2, . . . is 
computed for given x,, = x(t,) by an implicit time stepping system. This procedure 
preserves the band structure of the matrices A and B and is only a minor modifica- 
tion of the routinely used inverse vector iteration scheme. 

A general matrix can be decomposed into a Hermitian and an anti-Hermitian 
matrix A= $(A+A”) + +(A-A”). We may easily get the smallest and largest 
eigenvalues of each part. But only for normal matrices are the minimum and 
maximum values reached by an eigenvalue. Generally, this information is not of 
much use. 

The Nyquist method and Penrose criterion for stability are derived from the 
theory of complex functions. 

Let f be a meromorphic function on G c C with poles pi, i = 1, 2, . . . . Z, and zeros 
zk, k = 1, 2, . . . . K counted according to multiplicity. If Z is a closed rectifiable curve 
in G homotopic to zero and not passing through the points {pi} and { zk}, then 

i= I 

(2.19) 

In the case of multiplicity one, the right-hand side reduces to xk mk - xi li yielding 
the number of simple zeros diminished by the number of simple poles of the 
function f(z). 

Assuming there is an accurate and efficient way to evaluate the determinant for 

FIG. 2.1. The complex w plane showing the closed curve used in the Nyquist analysis 
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any z = 3, EC, we then obtain the number of eigenvalue inside the contour r. Let 
f(z) = det(A - zB), then 

1 f’(z),=, -- 
s 27ci rf(z) 

(2.20) 

If we make a change in variable from 1 to CD: A= - io, then an instability occurs 
if o, = Im(w) > 0. If the contour r is chosen as shown in Fig. 2.1, then the integral 

$-.$ do- f'W=, 
r f(o) 

(2.21) 

yields the number of exponentially growing modes, i.e., the number of zeros off (co) 
with w,> 0. Often the contribution on the half-circle 101 eie (0 < 13 <n) with 
/WI + cc does not contribute to the integral. Then N is determined by following f 
from o = -cc to o = + co. Generally, the function f traces out a curve y in the 
f-plane and the integral along this curve can be rewritten as 

(2.22) 

with a branch of the logarithm as solution, and the integral counts the number of 
times the point w = f (0) encircles the origin in the w-plane as o describes the curve 
r in the w-plane once in the positive sense. To determine the number of times the 
origin is encircled, only the values of the real part fR at values q, for which one 
has vanishing imaginary part f,(q,) = 0 need be calculated. 

FIG. 2.2. The complex w = D(w) ( =f(w)) pl ane with the Nyquist diagrams for a stable case and an 
unstable case. 
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This method is applicable for general functions f(o) usually obtained by a 
dispersion relation and for analyzing microinstabilities. The mapping f(o 1 o E r) 
from the o-plane into the f-plane is called the Nyquist diagram. If the contour y 
does not encircle the origin w =f(w) = 0, the system is stable. This technique has 
been applied by White et al. [ 1 l] explaining the “fishbone instability,” where 
kinetic effects drive a macroscopic MHD mode unstable; a typical result is 
displayed in Fig. 2.2. The eigenvalue problem is of the form 

i.e., highly non-linear. 

3. ALCBRITHMS FOR THE EIGENVALUE PROBLEM 

The review on linear algebra has clarified the details needed for detailed 
discussion of the eigenvalue solvers in use. These solvers can be separated into two 
classes. In the first class all eigenvalues and, optionally, the eigenvectors of a given 
matrix are computed. These algorithms at present allow matrix dimensions 
of the order of n N lo3 and are available in libraries, such as EISPACK [ 121. In 
generating the eigenvalues the original matrix is overwritten. 

The second class aims at parts of the eigenvalue spectrum or at selected eigen- 
values. The structure and sparseness of the matrix are largely preserved. Thse 
solvers allow large-scale computations for matrix dimensions n N 106, when data 
are stored out of core. 

Well-known members of this class are inverse iteration, the Lanczos algorithm 
and Rayleigh quotient iteration. When tailored to the specific problem considered, 
these methods can be very successful and efficient. In addition, an initial-value 
formulation is presented and non-linear eigenproblems are discussed. Eventually, 
some aspects of software and hardware are addressed. The general-purpose solvers 
are discussed at the beginning. 

A. General Methods 

QR ALGORITHM. The eigenproblem Ax = ,%x is solved most successfully by QR, 
which has evolved as the most reliable solver. At first the matrix A E UYx” is put 
into a special form, e.g., reduced to Hessenberg form, then decomposed into unitary 
and upper triangular form A = T _, = U, R,; then the product T, = R, U, is formed 
and again decomposed. Generally, let for k = 0, 1, 2, . . . . 

T k-1=UkRk (3.1) 

be the QR or Householder orthogonalization and further set 

T,= R,U,, (3.2) 
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then each T, is unitarily similar to A. Important is the fact that T, almost always 
converges to upper triangular form, i.e., to a Schur decomposition. Numerical 
stability is improved by putting A into upper Hessenberg form. This is achieved 
by the Hessenberg QR step. It is important that the QR iteration preserve the 
Hessenberg structure. The Hessenberg decomposition 

U,HAU, = H, (3.3) 

where U,, is composed of a product of Householder matrices, can be computed in 
a finite number of steps. A sequence of upper Hessenberg matrices, unitarily similar 
to the original one is formed and converges to a quasi-triangular matrix. For sym- 
metric A a tridiagonal form is obtained. The eigenvalues are extracted from 1 x 1 
and 2 x 2 submatrices. Details are found in textbooks and in the EISPACK manual 
with references therein. 

The algorithm takes about n3 flops. The performance of the QR in a CRAY- 
XMP is displayed in Fig. 3.1. Selected eigenvectors can be computed by inverse 
vector iteration, which is described later. 

Once the Schur decomposition QHAQ = T has been computed, the eigenvectors 
or the Jordan canonical form of A can be ascertained. In the ELR scheme presented 
by Dax and Kaniel [16] A is first reduced to Hessenberg form, and then the 
corresponding matrix H is reduced to a tridiagonal matrix by the elimination 
method, while the eigenvalues of T are computed by the LR algorithm of 
Rutishauser (described in, for example, Wilkinson [ 11). 

QZ ALGORITHM. The algorithm by Moler and Stewart [17] is based on the 
generalized Schur decomposition (Theorem 4). It is concluded that 

QAZy = lQBZy 

are unitary-equivalent and x = Zy. 

and Ax = IBx (3.4) 

In the first step A is reduced to upper Hessenberg form and B is reduced to 
upper triangular form. In the next two steps A is further reduced to quasi-triangular 
form and then to triangular form, from which the eigenvalues are extracted. In the 
fourth stage the eigenvectors are obtained. This algorithm does not actually 
produce the eigenvalues 1; but instead returns ai and fii, the diagonal elements of 
the triangular matrices QAZ and QBZ, while the eigenvalues are obtained by 
li = ail/Ii. This scheme is an extension of the QR algorithm and requires roughly 
twice the computing time. The performance of the QZ on a CRAY-XMP is 
displayed in Fig. 3.1. 

A modification of the QZ algorithm with fast Given’s rotation is presented by 
Marchy [18]. A generalization of the LR algorithm applies elementary transforma- 
tions for the reduction to upper Hessenberg form and then uses the LR algorithm 
of Rutishauser to extract the eigenvalues. It is called the LZ algorithm by 
Kaufmann [19]. In Eispack the LR algorithm is used to compute the eigenvalues 

581/85/l-2 
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FIG. 3.1. The performance of the QR and QZ algorithms on a CRAY-XMP; the total CPU time in 
seconds needed to solve Ax = ABx is given as a function of the matrix dimension. 

of a complex upper Hessenberg matrix which arises in solving the standard 
eigenvalue problem with complex matrix A. Special routines exist for computing 
eigenvalues of tridiagonal matrices, both symmetric and general. These solvers are 
often built into other algorithms, such as the Lanczos, for computing eigenvalues 
and are hence quite often applied in the corresponding iteration. 

Naturally, there are many variants for solving the symmetric eigenproblem. The 
NICER (Nagoya Iterative Computation Eigenvalue Routines) fast eigenvalue 
routines are published in [22]. For solution of the standard problem A is 
converted to a tridiagonal matrix T by a Householder transformation matrix H. In 
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the second step, the eigenvalues of T are determined by the bisection method, if m 
eigenvalues with m/n <0,25 are sought, or by the QR method if m/n >0,25. The 
CPU time required is 

T= t,n3 + t,n2m. (3.5) 

The generalized eigenvalue problem is reduced to a standard one with A, where A 
is decomposed into the sum of an upper triangular matrix R and its transpose and 
B is factored by a Cholesky decomposition 

A=LP(R+R=)L-=. 

This requires n3/2 multiplications and (n2 + n) words of storage. The eigenvector 
matrix is calculated by the inverse iteration method. An extension of the power 
method, the Jennings method, is implemented, being discussed below, where the 
CPU time scales as 

T= t3n2m + t4nm2. (3.6) 

The reduction of the band-symmetric generalized eigenvalue problem to the 
standard eigenproblem without destroying the band structure is presented by 
Crawford [23] and Tsunematsu and Takeda [24]. Another variant, the HR 
algorithm, has been published by Bunse-Gerstner [20] and for the symmetric 
generalized problem in [21]. 

B. Iterative Methods 

This family of solvers exploits specific features of the given matrix, such as 
bandedness and sparseness, and aims at more efficient performance than the 
general-purpose solvers. This means that substantially fewer than n3 operations are 
required. This is usually achieved by the iterative methods presented. Clearly, an 
iterative method tailored to a specific problem yields many possibilities for 
improvement. Hence many variants of these methods exist. Here, only their basic 
features can be discussed. This class of iterative schemes is categorized as vector 
iteration, inverse iteration, Lanczos schemes, and Rayleigh quotient iteration. 

(i) Vector Iteration 

Suppose A E @” x n is diagonalizable with [A11 > llz21 > ... l&l. For a given &EC” 
a sequence of vectors 5, is computed according to 

zk=Aik-,, (3.7) 

Ak = fz/c)i9 where Ids =max{ l(zk),l,j= 1, 2, .,., n}. (3.8) 

Zk = z/J&, (3.9) 
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If f, = cy=, ajxj has a non-zero component along xi (with {xi} a basis of eigenvec- 
tors of A) (a, # 0), 

(3.10) 

For large enough i the power method converges to the dominant eigenvalue and 
eigenvector. If l&/12,1 is close to unity, the convergence is very slow. 

In case there are a number of independent eigenvectors corresponding to the 
dominant eigenvalue Al=&= ... =&and 11,1 >j&+ij > ... 
converges to yield 

A%, = n; (~~a~x~+j~+~aj(~)ixi)~ 

approximating some vector lying in the subspace spanned 
x17-7 r. X 

l&l, this scheme still 

(3.11) 

by the eigenvectors 

The assumption that A is diagonalizable is not essential. If the largest eigenvalue 
is uniquely defined, i.e., IA1 1 = llil implies 2, = ;li, then this scheme converges to 1, 
and the corresponding eigenvector. The slow convergence for closely spaced eigen- 
values is improved by inverse iteration, where new vectors are computed by the 
recursion 

(A-Iz)zi=Zi-,. (3.12) 

Often the evaluation of several (say m) eigenvalues and eigenvectors is desired. Sub- 
space iteration is one of the methods. This algorithm is suited to yield the dominant 
eigenvalues together with the right eigenvector set of a large real unsymmetric 
matrix A of order n. The matrix U composed of m (m <n) eigenvectors, 
u = (ill, 4, . . . . II,), is premultiplied by A and the result stored in V = AU. 

Let n = (/1, 1 (lb) = (A,, A2, . . . . A, 1 A,+ ,, . . . . 2,) be a diagonal matrix of the 
eigenvalues of A arranged in descending order of absolute magnitude and 0, 
and Qb be the matrix of corresponding right eigenvectors. It follows that 
V = Q,n,C, + Qb/ibCb, where C, and Cb are coefficient matrices matrices of size 
m x m and (n -m) x m. After sufficiently many iterations the coefficients of Cb are 
small in relation to those of C, and this scheme converges towards the m dominant 
eigenvalues and right-hand eigenvectors. For details we refer to the paper of 
Stewart and Jennings [25] and to Partlett’s book [2] (Chap. 4). 

Now we return to inverse vector iteration and describe its implementation for the 
symmetric and non-symmetric eigenproblem. 

(ii) Inverse Vector Iteration (Non-Hermitian Case) 

For large-scale non-symmetric eigenproblems inverse vector iteration is a power- 
ful tool. Here the implementation of Kerner et al. [32-341 is reported. Naturally, 
this scheme is discussed in many textbooks. This version of the scheme has been 
applied to solve for the entire spectrum of complicated problems. 
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The study of the linear motion of dissipative systems by means of a normal-mode 
analysis leads to the general eigenvalue problem (2.6), where A and B are complex 
matrices; B is Hermitian and positive definite and A is arbitrary. The eigenvalue 3, 
and the eigenvector x are, in general, complex. In the algorithm presented, the band 
structure of A and B, which usually occurs in a finite-difference or finite-element 
discretization, is preserved and utilized. Let us assume that the chosen discretization 
does not lead to defective matrices. 

The initial value 1, is considered as an approximation to the eigenvalue of the 
system (2.6), i.e., 

A = A0 + A/l,, Wol @ 1~01. (3.13) 

With the shift ,$, the eigenvalue equation reads 

(A-I,B)x=d&Bx. (3.14) 

With x0 as initial guess new vectors xi are computed as solutions of the iterative 
system 

(A-&,B)xi=d,l-,Bxj-,, i= 1, 2, 3, . . . (3.15) 

and the iterated eigenvalues Ali by means of the Rayleigh quotient 

Al,=X”(A-&B)xi 
I xyBxi ’ 

i= 1, 2, 3, . . . . 

Since the matrix A is in general non-Hermitian, a second sequence is defined by 
the left-hand eigenvectors, yielding the iteration 

Yo=Xo 

(A-loB)xi=Ali-,Bxi-l, i= 1, 2, 3, . . . (3.17a) 
- 

(A-loB)Hyi=A~i-lByi-l, (3.17b) 

In the non-symmetric case an improved eigenvalue is determined from right-hand 
and left-hand eigenvectors xi and yi by using the generalized Rayleigh quotient 

A~,=YY(A-bB)Xi 
I yyBxi ’ 

For proof of the convergence of this sequence the reader is referred to textbooks. 
The system of linear equations is solved by factorization. The LU theorem 
(Theorem 1) states the, actually quite weak, condition for ensuring this decomposi- 
tion. The shifted matrix is written as a product of triangular matrices: 

A’=A-A,B=LU. (3.19) 
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This LU decomposition preserves the band structure and can be efficiently 
performed. With the definitions 

ripI = di,-, Bxip I = d,l- 1 ii- 1, 
- - 

sic I =Ad,-, Byi-l=Al;-IYi-,, 

the equations are solved for pi and qi, 

(3.20a) 

(3.20b) 

Lpj=rj- 1, (3.21a) 

U”qi=Sj- 1, (3.21b) 

and eventually new vectors xi and yi are evaluated by 

ux, = pi, 

LHy, = qi. 

(3.22a) 

(3.22b) 

Utilizing the decomposition of A’, Eq. (3.19), it holds that 

y”(A - & B)xi = y” LUx, = q” pi, 

and the Rayleigh quotient assumes the form 

A&= 9”pi-P”Pi 
y” Bxi ~“2; 

(3.23) 

where gi= Bxi, defined in Eq. (3.20a), is needed to compute the new vector 
ri = A&5&. The iteration is terminated if the error is smaller than a defined tolerance 
E, which has to be larger than the machine accuracy. 

The inverse vector iteration is a very efhcient method to compute selected eigen- 
values and eigenvectors of general matrices. It preserves the band structure and 
thus allows the treatment of very large matrices. The slow convergence, which is 
sometimes considered a severe drawback, is strongly improved by a suitable com- 
plex shift. Fast convergence is found by restarting the iteration with a new shift. The 
search for eigenvalues of interest can be improved by a continuation method, which 
is considered a special case of the homotopy method. With a continuation proce- 
dure in a relevant parameter, only a few shifts are needed to obtain the result. In 
the case of Hermitian matrices Sylvester’s theorem yields the number of eigenvalues 
in a given real interval and every desired eigenvalue can be found by the bisection 
method. A generalization of this theorem for general matrices does not exist and 
therefore the inverse vector iteration cannot be used as a black box to compute all 
the eigenvalues in a given complex domain. But this also holds for the subspace 
iteration or for the Lanczos algorithm. In practice, we did not find this drawback 
very restrictive; the results obtained from a coarse mesh by means of the QR algo- 
rithm or from a line mesh by continuation provide a good guess for a suitable shift. 
Inspection of details of the eigenfunctions, such as the number of radial oscillations, 
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even makes it possible to compute all eigenvalues in a certain domain of the 
complex l-plane successively. 

The implementation of the algorithm makes use of routines from the LINPACK 
library [13]. If the matrices A and B are real, then the eigenvalues occur in com- 
plex conjugate pairs. The matrices A and B are given as INPUT stored in the usual 
band-matrix storage mode, so that the zero elements outside the bands do not 
occur at all. Next, the shifted matrix A’ is computed and factored. Note that A’ is 
now considered complex. In order to make full use of the fast execution on the 
CRAY-1 or CRAY-XMP vector computer, the LINPACK routines CGBFA for 
factorization and CGBSL for successive solution of linear systems are used. The 
evaluation of left-hand and right-hand vectors is achieved by using the same 
decomposition, The vector x,, is usually initialized by random numbers. The itera- 
tion is terminated if the error is smaller than the desired tolerance E: 

(3.24) 

for lie i # 0. Convergence is then obtained in the step i = m. Termination is also 
forced if the eigenvalue is not monotonically approximated, in order to avoid 
pathologic iteration paths, i.e., if 

lAli-Ali-,I > [Ali-, -Al,-,1 

for i > 3. If convergence is achieved, the final eigenvalue is given by A= & + Al, 
and the eigenvector by x = x,. 

Usually five to ten steps are needed for convergence. The maximum number of 
steps is chosen as i,,, = 20. It is found that an eigenvalue is obtained more easily 
by choosing a new shift rather than by performing more iterations. 

The minimum amount of storage includes the matrices A and B and the decom- 
position of A’ = LU together with the vectors xi and yi. If the norm of the differen- 
ces from two successive steps [Ix, - xi- I II and llyi - yip 1 II is not used to monitor the 
convergence, it is possible to overwrite x, and yi with ri and si defined in Eq. (3.20). 
In addition, a work-space for the pivoting in the linear system has to be given. 
These storage requirements can easily be improved by keeping only the minimum 
data necessary for the algorithm in the fast memory and by storing data on disk. 
The storage improved algorithm then works as follows: 

1. Compute matrix B and store it on disk B. 

2. Compute matrix A and perform the shift during computation 
A’=A-&B. 

3. Factor A’ = LU and store L and U on disk A. 
4. Compute new vectors and keep xi, yi, pi, and qi in the fast memory. 
5. Read in L, U, or B separately, if needed. 

This optimized version is a simple extension of the original one. Only one com- 
plex matrix in band-matrix storage mode is required in the fast memory at any step 
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together with additional workspace for the factorization with the dimension of the 
upper band width. 

Next we estimate the CPU time and the storage necessary for the algorithm. The 
number of operations to factor a band matrix with band width b and dimension d 
is N, g db2 and the number of operations to solve the linear system N, s db. 

For m iterations there are then 

N,=N,+mN,rdb(b+m) (3.25) 

operations required. Most of them are spent in the decomposition. Examples for the 
performance with a typical CPU time of 5-10s on a CRAY-1 are given in Ref. [32]. 

Very large systems are tractable only by storing data out of core. Discretization 
of a set of two-dimensional differential equations usually leads to a blocktridiagonal 
structure. When L and N denote the number of poloidal and radial expansion 
functions, these sub-blocks have a small dimension b N 200, but the total dimension 
is large, d > 104. In the dissipative MHD case based on a Fourier, finite-element 
discretization one finds that b = 16 x L and d = b x N with d $ b, i.e., N B 10. 

The number of non-zero matrix elements inside the bandwidth is nn = 3b . d = 
3b2 . N= 3 . 162. L2. N. Inclusion of only 10 Fourier components leads to about 10’ 
complex words to be stored in memory, which even for supercomputers is difficult 
to match. The tractable matrix size for the in-core solver becomes quite small if the 
dimension of the sub-blocks b is large, e.q., b > 100. When the matrix dimension 
becomes very large, d = b . N with ti$ b, it is necessary to organize the algorithm to 
perform the operations successively with increasing radial label i, 1 < i< N. This 
algorithm is published by Kerner et al. [33] and Kerner [34]. 

Given the shifted matrix A’ = A - I, B, which is easily composed by using only 
sub-blocks of size 6, the factorization is performed blockwise. A’ is again decom- 
posed into a product of triangular matrices (Eq. (3.19)). The factorization can then 
be chosen as 

I A;,, A;,2 0 ... 0 

0 
0 

0 ‘... . . . ‘. 

AIN- 1.N 

K, L, ‘.. ; 
. . . . . . . . . ; 
. . . . . . . . . 0 
. . . 0 KN L, 

u, WI 0 ... 0 
ou2w2 ... ; 

* . . . . . 

. . . 

0 
. . . u N-l w,-, 

. . . . . 
o uN 
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to yield the following algorithm for computing the lower and upper triangular 
blocks Li and U i: 

LiUi = Ai,i9 i= 1, 
Ai,i- Kiwi- 1, i = 2 . . N, (3.26) 

which is performed with the LINPACK routine, CGBFA. The evaluation of the 
quadratic system requires solution of 

UT-,,;=A’&,, i=2...N (3.27) 

by means of the CGBSL routine. Eventually, the matrices Wi are obtained by 
solving 

L,W, = A;,i+ 1, i= 1 ,, . . . . N- 1. (3.28) 

These sub-blocks composing the shifted matrix A’ as well as its factorization are 
stored on disk. The storage can be reduced to only three blocks kept 
simultaneously in the fact memory and by making access to others through I/O 
from disk if required. The organization of the pivoting is left out of this discussion. 
The inverse vector iteration with evaluation of new vectors x, and pm at each step 
is organized like the algorithm described above. These vectors of length d, e.g., 
d= 16 x L x N, are partitioned into N parts and stored accordingly. 

Finally, an overall optimization of the algorithm requires a well-balanced ratio of 
CPU versus I/O operations. Optimal performance is achieved by partitioning the 
available core into two pieces and by keeping as many blocks in memory as fit into 
one part. The following blocks are then read into the second part. Data transfer can 
be sped up by using different channels. The algorithm is tuned to perform I/O 
during execution. 

The algorithm described is designed for a computer with a single processor. In 
order to utilize the capability of a vector machine, we designed another version 
which is closer to the original algorithm. 

Multiprocessor computers like the CRAY-2 having four processors achieve maxi- 
mum performance if the algorithm for the factorization and the subsequent solver 
is restructured along the ideas outlined in Section 3.D. Then the I/O out of core is 
not essential and only the overall CPU requirement puts a limit on the tractable 
matrix dimensions. In this fashion the study of fully three-dimensional problems 
becomes feasible. A similar solver for computing real eigenvalues is presented by 
Tanaka et al. [35]. 

Remark. If A and 6 are real banded matrices, the shifted matrix A’ = A - &, B 
becomes complex for a complex shift &. The question then arises whether it is 
possible to avoid complex arithmetic while preserving any advantage of banded- 
ness. For the standard problem B = I complex arithmetic can be avoided by using 
double shifts, i.e., working with the real matrix A’A’ whose bandwidth is double 
that of A. Parlett and Saad [36] consider different ways of implementing shift and 
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invert techniques being used in Arnoldi, Lanczos, or subspace iteration and analyze 
their costs. In the iteration implemented by Kerner et al. [32-331 the method was 
adopted that simply accepts complex arithmetic on grounds of simplicity and for 
generalization to complex matrices later on. 

(iii) Inverse Vector Iteration (Hermitian Case) 

Here the widely used HYMNIA package [26] is considered, which solves the 
general eigenvalue problem where B is positive-definite and A is either real sym- 
metric or Hermitian. Both matrices have a band structure; n denotes the dimension 
and b the band width. Whenever all principal submatrices of A are regular the 
shifted matrix can be decomposed according to Theorem 1. 

From Sylvester’s theorem the number of eigenvalues less than I, is given by the 
number of negative elements in A. This property allows a bisection sequence to be 
set up for determining all eigenvalues in a given real interval. 

A Cholesky decomposition is made for the B matrix: The iteration process 

L ALHx,+ 1 = R=Rx, (3.29) 

is performed with new vectors u, 

II/( = Rx,, (3.30) 

which are then orthonormalized, 
Vk = R-Glk, (3.31) 

to yield 

LY k+I=Vk, (3.32) 

Aw k+l =Yk+l> (3.33) 

LHX k+I=Wk+l. (3.34) 

The iteration stops when all components i of the orthonormalized vectors u satisfy 

1uy1,, - al$)l <&, i= 1 , . . . . rn, (3.35) 

where CJ = sign(l- &). The r eigenvectors xk define r eigenvalues by the Rayleigh 
quotient 

(3.36) 

The convergence rate is given by 

0 = Ia, - a,j2/1a2 - &I2 (3.37) 

when 1, and II, are the two nearest eigenvalues to il,. Simultaneous iterations on 
several eigenvectors have to be done for degenerate cases. The computing time is 
given by the CPU time of the decomposition, where n. b2 operations are performed, 
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and by that of the iterations, where n . b operations and n, = r. k,,, iterations are 
done, 

T= T, + T2 = n . b(bt, + n,t,), (3.38) 

t, and t, being machine-dependent factors. If the band width b is not too large, it 
is often not convenient to iterate on more than one eigenvalue at once. 

For two-dimensional problems involving several physical quantities, such as 
three components of the velocity, the matrix dimensions become huge, e.g., 
n = 3(n,, x n,,) N 3 x 104. If the discretization leads to block-tridiagonal form, the 
same scheme can be applied in conjunction with the use of external storage and the 
assessment of data through I/O. The Hymnia Block package [27] is the 
straightforward extension of HYMNIA. For two-dimensional MHD stability 
studies, systems of size n N 3 x lo4 are routinely solved for the smallest eigenvalue, 
especially for negative ones. A special version tailored to the ERATO code [29] by 
implementing sparse matrix techniques has been developed by Scott and Gruber 
[28]. This special version diminishes the requirements on CPU time, disk and 
memory storage, and number of I/O operations. The extensive use of this optimized 
version made it possible to summarize the very detailed results for many different 
configurations and to formulate a simple scaling law for the attainable beta values 
of tokamaks. 

A vectorizable eigenvalue solver for sparse matrices, where the sparse pattern of 
the matrices is fully utilized, has been developed by Bernard and Helton [30]. 
Bisection and inverse iteration is proposed by Waldvogel [31] for matrices with 
variable bandwidth. 

(iv) Lanczos Algorithm 

The Lanczos method is particularly useful when a subset of the eigenvalues, such 
as the arithmetically largest eigenvalues, is wanted. By introducing suitable shifts 
other subsets of the spectrum can be mapped out in addition. The Lanczos techni- 
que consists actually of a family of methods which differ in using complete, selec- 
tive, or no orthogonalization. Since the given matrix A is repeatedly multiplied on 
vectors, this matrix vector multiplication needs to be performed fast and accurately, 
with the sparseness of A being preserved. Hence, this family of algorithms is well 
suited to tackling large but sparse problems. 

It is widely used in the symmetric eigenvalue problem. In this case the error 
estimates on the eigenvalues are well founded and can be accurately evaluated in 
the computation. Very recently the Lanczos method without orthogonalizatin was 
also applied to the non-symmetric eigenvalue problem. Unlike in the Householder 
method, no full matrices are generated when the given matrix A is tridiagonalized. 
Usually, knowledge about the extremal eigenvalues emerges long before the 
tridiagonalizing is complete. All the Lanczos methods generate a sequence of 
tridiagonal matrices (Ti} with the property that the eigenvalues of Ti are 
progressively better estimates of A’s extremal eigenvalues. In principle, all eigen- 
values of A can be determined. The mathematical theorems for the algorithm are 



26 W. KERNER 

based on exact arithmetic. Unfortunately, the roundoff errors introduce a severe 
problem and make these algorithms difficult to implement. 

A detailed discussin of Lanczos schemes is done by Cullum and Willoughby [ 14, 
15, 37-39, 46, 471 and by Ericsson and Ruhe [40]. 

1. Symmetric Lanczos. Suppose A E KY’“” with AT = A and { qi} E (w” is a 
sequence of orthonormal vectors where the matrix 0 is composed by these vectors, 
Q = (41, . ..> q,), then the elements of the matrix T = QTAQ are chosen such that 
T E C” x n is tridiagonal, 

T= T= 
’ ’ 

and are computed direct from QT = AQ, i.e., from 

Aqj=Pj~lqj-l+ajqj+Bjqj+l 

for j = 1, 2, . . . . n - 1 with b,, = 1, q0 = 0. 
The orthonormality of the qj implies 

aj = qj?Aqj, Bj = ST+ 1 Aqj* 

If the vector 

is non-zero, then 

Sj+ 1 = rjlPj, 

where flj = r,!’ rj. 

The Lanczos iteration is defined as 

Initialize (j=O) ro=q,, PO= 1, qo=O 

Iterate (j = 1,2, . . . . n - 1) while /Ii # 0, 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

j=j+ 1, 

aj = qJ?Aqj, 

rj=(A-ajZ)qj-pj-,qj--I, 

Pj = llrjll2. 
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Note that A is not altered during the entire process. Thus, only a procedure for 
performing matrix-vector products need be supplied, where the sparsity of A can 
be exploited. 

The eigenvalues of Ti are computed by using the symmetric QR algorithm or any 
of the special methods such as the QL algorithm or the bisection method. For a 
given XEC” and AEC’~~ the Krylov matrix is defined by multiplying x by A: 

K/(x, A) = (x, Ax, . . . . A’- ‘x). (3.44) 

The Krylov subspace is then the linear combination of all vectors in K/(x, A): 

KL(x, A) = span(K’(x, A)). (3.45) 

The following theorem holds. 

THEOREM 8. Let A E C” ’ n be Hermitian and q, E C” have a unit norm. Then the 
Lanczos iteration runs until j = m, where m = rank K”(q,, A) and 0” = (ql, . . . . q”) 
has orthogonal columns. It further holds that 

AQj = QjTj + rjeT for j= 1, . . . . m 

and Qi AQ,,, is an unreduced tridiagonal matrix. 

The Lanczos algorithm stops with p,,, = 0 for some m 6 n and AQ, = Q,T,, 
where span Q, = K’f(q,, A) = K, m+ ‘(ql, A). Then each eigenvalue of T, is an 
eigenvalue of A. 

However, an exactly zero, or even small, fij is a rarity in practice. Then other 
criteria must be sought for the termination of the algorithm. It can be shown that 
the Schur decomposition of Tj, 

yields the estimate 

SfT,S = diag(B,, . . . . 0,), 

min lo,--PI G Ibjl IsjilT i = 1, . . . . j. (3.46) 
PCA(4 

Bounds for the eigenvalues can be obtained by the Kaniel-Paige theory, e.g., 
Paige [41]. 

The effects of finite-precision. arithmetic have to be considered at this point. 
Roundoff causes loss of orthonormality among the Lanczos vectors, i.e., 07 Q, = I 
is not fulfilled, and the algorithm may appear unstable. The convergence of the 
scheme causes loss of orthogonality. The following step for establishig 
orthogonalization of qj+ , against all previous q’s could be added after rj is com- 
puted: 

rj := rj - qr(q;“rj), r=j,j-l,..., 2,l. (3.47) 
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Unfortunately, this is a costly remedy. Instead of orthogonalizing qj+ i against all 
previous q’s, the same effect can be achieved by orthogonalizing it against the (typi- 
cally few) converged Ritz vectors, a scheme called selective orthogonalization, see 
Parlett and Scott [42]. 

Even with full re-orthogonalization the Lanczos algorithm cannot detect multiple 
eigenvalues. Like the LU decomposition, the Lanczos algorithm has a block analog. 
This version is capable of determining multiplicities up to the block size. 

Lanczos algorithm with no re-orthogonalization. Owing to finite-precision 
arithmetic the Lanczos vectors will in practice not be linearly independent. Then 
simple eigenvalues of A may appear as numerical multiples of Tj and spurious 
eigenvalues may appear. Complete or selective re-orthogonalization can be intro- 
duced to overcome these pitfalls. 

There is another approach (see Cullum and Willoughby [38]) of not using any 
re-orthogonalization. Then a scheme is devised to unravel the effects of losses in 
orthogonality. Here an identification test is performed for picking out the subset of 
those eigenvalues of Tj which are legitimate approximations to eigenvalues of the 
original matrix. 

The Lanczos phenomenon indicates the possibility of computing many eigen- 
values of A by computing the eigenvalues of the Lanczos matrices generated in the 
iteration with no re-orthogonalization. It is an observed phenomenon, 

Lanczos phenomenon (conjecture). Let A E C” xn be symmetric and generate 
matrices T, based on the Lanczos iteration defined in Eqs. (3.39k(3.43) for 
j= 1, 2, . . . . Then for large enough mO every distinct eigenvalue of A will appear as 
an eigenvalue of T, for all j > m,. 

It is necessary to devise an identification test for separating “spurious” eigen- 
values due to the losses in orthogonality of the Lanczos vectors from the “good” 
ones. This test removes at each step those eigenvalues which are spurious. For each 
j, j=l,2 ,..., each computed simple eigenvalue Jo of T, is compared with the eigen- 
values of the corresponding submatrix f,-obtained by deleting the first row and 
column of Tj. If ,u is also an eigenvalue of f,, it is regarded as “spurious” and is 
discarded from the list of computed eigenvalues. The remaining eigenvalues are 
accepted and labelled “good.” Among those good members kept, numerical multi- 
ples of eigenvalues are accepted as converged approximations to eigenvalues of A. 

Details of this version of the Lanczos method are given in Cullum and 
Willoughby [14] together with examples of the identification test and results. It is 
noted that complex Hermitian matrices A are easily included. 

2. Generalized eigenvalue problem. The generalized case Ax =1Bx with 
A, B E R”“” and B positive definite can easily be treated. Then the qi have to be 
chosen B orthogonal, i.e., 

q;Bqj=6,. (3.48) 
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Lanczos iteration is then defined by 

Aqj=Pj-lBqj-l+ajBqj+BjBqj+l (3.49) 

forj= 1, 2, . . . with j&q0 = 0. The B orthogonality of the qi’s again implies 

aj = q,’ Aq,; Pj = (II’+ 1 Aqj. 

It is helpful to compute auxiliary vectors pj with 

pj = Bq,. (3.50) 

Then the p and q vectors are biorthogonal, i.e., pTqk = Sjk. 
A different way to set up the Lanczos iteration for the generalized problem is to 

utilize the Cholesky decomposition B = LLT and the fact that A is similar to 
G = L-‘ALeT. Substituting G in the basic iteration and multiplying by L if 
appropriate updates the /I coefficients to 

IPj+lI = llLplrjll, (3.51) 

with rj given by Eq. (3.42). This is actually very similar to solving Eq. (3.50). 

3. Shifts. In many problems the extremal eigenvalues are not of interest. Often 
the largest ones correspond to eigenmodes with shortest wavelength, which are not 
well represented. Of great interest is, however, a subspace of eigenvalues around, 
say J.,, or between I, and 1, (A,,, 1, E [w with 1, < 1,). Then the problem Ax = 1Bx 
is converted to an equivalent shifted inverse form 

(A - &B)x = (A - A,) Bx (3.52) 

or 

B(A - &B)-’ Bx = pBx, (3.53) 

where 

p = l/(1 - 2,). (3.54) 

Clearly, eigenvalues 1 close to I, produce p’s large in magnitude and the very large 
A’s are transformed to p’s close to zero. The vectors are made B-orthogonal. 
The Lanczos iteration is then applied to A = (A-&B)-’ B as defined by 
Eqs. (3.39)-(3.43). 

The shifted matrix is factored (A - 1, B ) = L dLT, and (A - &,6)x = y is solved 
for given y by means of this factorization. 

The coefficients a are given by 

a.=~fB(A-&B)-‘Bwj 
J w; Bwj 

(3.55) 
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All eigenvalues in the desired interval [A,, A,] can be found by using appropriate 
shifts. 

(v) Unsymmetric Lanczos 

The similarity reduction of a general matrix to tridiagonal form is inadvisable for 
reasons of numerical stability. Despite this it is of interest to examine the Lanczos 
algorithm for application in the complex eigenvalue problem. Suppose that for 
A E R” x ” a non-singular matrix V exists with V - ‘AV = T, where 

(3.56) 

This implies AV = VT and ATW = WTT, where WTV = Z,,. Let vi and w, be 
arbitrary starting vectors with VT. wi = 1. Then for j = 1,2, . . . . m the two-sided 
recursions 

AVj=Yj-IVj-1+UjVj+PjVj+I, YOVO = 0 

ATWj=Bj-lWj-I +UjWj+YjWj+,, ~OWO=O 

emerge forj= 1,2, ..,, n- 1. 

(3.57) 

(3.58) 

Combined with WTV = VTW = Z,, the coefficients aj, pi, and yj satisfy 

cij = w,’ Av,, y,=w,?Av,,,, pi = wi’+ I Avj. 

In the Lanczos iteration new vectors are computed for j= 1,2, . . . . n - 1 as long as 
Bj#O: 

~jvj+l=(A-ajZ)vj-yj~l~j-,=:rj, (3.59) 

yjwj+,=(A-~jZ)T~j-~j-l~j-,=:pj. (3.60) 

There is some flexibility in choosing the scale factors /Ii and yj. A standard choice 
is to set flj = llrj/12 and yj = VT+ i . pj. 

This algorithm must terminate at the nth step with yj+ i = 0, but it may stop 
earlier. Premature termination at step k (k < n) can occur in two ways: 

(I) rk = 0 and/or pk = 0 or 
(II) rk # 0 and pk # 0, but Yk = V;T+ i pi = 0. 

Case (I) with fik = llrkllz = 0 is a welcome event since V defines an invariant sub- 
space for A. The real trouble, which cannot occur when A is symmetric, is case (II). 
Then the iteration terminates without any invariant subspace information for either 
A or AT. Therefore, this case involves serious breakdown. Very recently, rigorous 
attempts have been made to bypass this serious failure. There exist two-sided 
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Lanczos algorithms with no orthogonalization, a look-ahead Lanczos algorithm, 
and Arnoldi’s method. 

1. The look-ahead Lanczos algorithm (LAL). The two-sided Lanczos algo- 
rithm sometimes suffers from serious breakdown. This breakdown may occur in any 
attempt to use the familiar Gram-Schmidt process to produce a biorthogonal or 
biorthonormal pair of sequences of vectors. If oj = pi’ . vj is small, this scheme looks 
ahead, not to the next Lanczos vectors vj+ i, wJ+ r, but to special vectors in the 
plane (vi, vi+ r) and (wj, wj+ r). The simplest choice is 

vj+l = AVj - ojv, _ , , 

wj+l =ATWj-OjWj-,* 
(3.61) 

It is necessary here to have a 2 x 2 pivot. This look-ahead algorithm then produces 
a block-tridiagonal matrix Tj. There is still the possibility of incurable breakdowns. 

In Ref. [43, 441 applications and results are presented. The LAL algorithm has 
been successfully applied to the resistive MHD problem and the results are in 
general promising. Recently, the emphasis has turned to fully complex eigenvalues, 
which makes complex shifts necessary. It is hoped that this extension is made soon 
in order to tackle large-scale complex eigenproblems by the improved algorithm. 

2. Arnoldi’s method. A simple algorithm which achieves the generalized 
Lanczos method is the one proposed by Arnoldi. It sequentially reduces the given 
matrix A to Hessenberg form. The approximate eigenvalues are obtained by com- 
puting the eigenvalues of the Hessenberg matrix H, of order m, produced at the 
m th step of Arnoldi’s process. Because of storage requirements an iterative solution 
is applied. Another possibility is to perform incomplete orthogonalization. Saad 
[45] analyzes both the method and its implementation. The method of Arnoldi 
computes a sequence of vectors v2, v3, . . . . v, (m < n) for a given vi with norm one 
by the recurrence 

hi+ I,jVj+ 1 = AVj- i huvi, 
i= I 

(3.62) 

where the h,, i= 1, . . . . j+ 1 are chosen such that vj+ 1 is orthogonal to vi, 
i= 1, 2, . . . . j, and Ilvj+J = 1. 

If the matrix A is symmetric then H, reduces to a symmetric tridiagonal form 
and the algorithm reduces to the symmetric Lanczos scheme. The underlying 
theorems are true in exact arithmetic. Analogously to Lanczos’s method in finite 
precision the computation can reveal a system {vl, v?, . . . . v,} far from orthonormal. 
If the h, are chosen to satisfy certain requirements, e.g. incomplete orthogonaliza- 
tion, a generalized process is defined. Numerical experiments are given in Ref. [45], 
but we are not familiar with any large-scale application. 

3. Unsymmetric Lanczos with no orthogonalization. As in the real symmetric 
Lanczos procedures, approximations to eigenvalues of A are obtained by com- 
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puting eigenvalues of the tridiagonal matrices T,, Eq. (3.56) obtained from the 
recursions (3.57) (3.58) for one or more values ofj, and then selecting appropriate 
subsets of these eigenvalues. We know, however, that the eigenvalues of an 
irreducible tridiagonal matrix depend only upon the products of the off-diagonal 
entries and not upon the individual values of these entries. Therefore, there are 
many alternative choices of yj and pj which would yield a suitable tridiagonal 
matrix T,,. From Eqs. (3.59) and (3.60) and the biorthogonality conditions we 
obtain the following basic constraints on the pairwise products of these scalars: 

PjYj = rTPj, j= 1, . ..) n - 1. (3.63) 

Historically, algorithm designers have emphasized the desirability of keeping 
numerical computations in real arithmetic and in other extensions of the Lanczos 
procedure to nonsymmetric problems, see, for example, Parlett et al. [43]; the 
authors have chosen to define yi and flj so that they are always real numbers. 

For several reasons, Cullum and Willoughby in [15] chose not to restrict them- 
selves to real arithmetic. The Lanczos recursions in Eqs. (3.59) and (3.60) generate 
matrices 

T, = W;AVj, (3.64) 

which are oblique projections of the given matrix onto the Krylov subspaces 

K:(v, 9 A) and Kk(w,, A=). 

Krylov subspace methods are based upon the contention that the behavior of a 
matrix A on its various invariant subspaces can be determined by considering the 
behavior of A on Krylov subspaces. Since the invariant subspaces of a nonsym- 
metric matrix are typically complex subspaces, it seems necessary to consider com- 
plex Krylov subspaces. The penalty computationally for working in complex rather 
than real aritymetic is significant both in terms of the amount of storage required 
and in terms of the number of operations required. However, even with this 
increase in storage the total amount of storage required by the nonsymmetric 
Lanczos procedure with no reorthogonalization is still very small and still much 
smaller than that required by the other proposed procedures which require either 
the selective reorthogonalization of the Lanczos vectors or even the complete 
reorthogonalization of those vectors. The effect of the increase in the operation 
count is significant but many of the operations required are vectorizable, and 
several significant benefits are obtained. 

Specifically, Cullum and Willoughby [ 151 define 

/3, = Y, = fi. (3.65) 

so that the Lanczos matrices are symmetric, tridiagonal but typically complex. 
Symmetrization of the off-diagonal entries symmetrizes the effects of the error 
propagation within the procedure. It also yields matrices for the subsequent 
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tridiagonal eigenvalue computations which are balanced a priori and which have 
identical left and right eigenvectors. Furthermore, the QL algorithm for computing 
eigenvalues of real symmetric tridiagonal matrices has a complex symmetric 
generalization which allows the computation of the eigenvalues of complex 
symmetric tridiagonal matrices in a minimal amount of storage as in the real 
symmetric case. Consequently in the nonsymmetric Lanczos procedure it is still 
possible to work with very large Lanczos matrices and it therefore becomes possible 
to obtain considerable information about the spectrum of many large nonsymmetric 
matrices. 

The nonsymmetric Lanczos procedure obtained using Eqs. (3.59), (3.60), and 
(3.65) with no reorthogonalization of the Lanczos vectors is discussed in detail in 
Cullum and Willoughby [ 151, where several numerical examples are presented. 
That procedure may be used to compute either a few extreme eigenvalues, many 
extreme eigenvalues, interior eigenvalues, or many eigenvalues throughout the 
spectrum. Exactly how much information can be obtained about the spectrum of a 
given matrix depends, as in the real symmetric case, see Cullum and Willoughby 
[ 143, upon the overall eigenvalue gap structure and upon the relative locations and 
gap structures of the particular eigenvalues of interest. The reader should refer to 
that reference for details on that procedure. 

The unsymmetric generalized eigenvalue problem Ax = IBx is considered, with A 
a general and B a symmetric positive definite matrix. Such an eigenproblem occurs 
in the normal mode analysis of dissipative MHD, see Section 4.D. The eigenvalue 
branches of particular interest, such as the Alfven waves, have eigenvalues which 
are both small in magnitude and very interior to the spectrum. The extreme eigen- 
values of these spectra are very large in magnitude with large gaps between them. 
Therefore a straightforward application of a nonsymmetric Lanczos recursion 
would yield those dominant eigenvalues and the small desired eigenvalues would 
not appear readily in the spectrum of the associated Lanczos matrices, if at all. In 
such situations it is necessary to introduce a shift and invert strategy as discussed 
for the symmetric case. Following Ericsson and Ruhe [40], who considered the 
corresponding generalization in the real symmetric case, the form of Eq. (3.53) is 
used where p = l/(1- 1,) and the complex shift & is chosen “near” the desired 
eigenvalues. In the real symmetric case the user specifies the interval of interest and 
the procedure can use Sturm sequencing techniques to determine the number of 
eigenvalues in any given subinterval. It then can use bisection of the subintervals to 
actually compute these eigenvalues. In the nonsymmetric case the eigenvalues are 
no longer on the real line. In general they can be anywhere in the complex plane. 
Furthermore, there is no Sturm sequencing property which allows the user to deter- 
mine whether or not there are any eigenvalues in any given region in the complex 
plane. This makes the nonsymmetric problem much more difficult. 

A shift and invert strategy requires the selection of a sequence of appropriate 
shifts and for each shift &, the factorization of the matrix 

A-&B=LU 
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to compute vectors of the form (A- l,B)P1 Bz for any given z. In the MHD 
application the matrices A and B are band matrices and such factorizations are 
feasible for large matrices. 

There are several ways of generalizing the Lanczos recursions to the generalized 
problem. We select the following generalization; see Cullum, Kerner, and 
Willoughby [47] for details of this procedure and its application to the MHD 
problem. Some of the results in that reference are summarized below, 

(3.66) 

where 

aj=w;B(A-&B)-‘Bvj, j?,=w;+,B(A-&B)-‘Bv,, vfBwj= 1. (3.67) 

Upon completion of the generation of the Lanczos matrix T,,,, the eigenvalues of 
T,,, are computed by means of the complex symmetric QL algorithm. Some of these 
eigenvalues are classified as “spurious” and discarded. The remaining eigenvalues 
are labelled as “good” eigenvalues. The test to identify the “good” eigenvalues is 
identical to that used in the real symmetric Lanczos procedure. The check for 
spuriousness uses a particular submatrix of each T,,,. Each eigenvalue is considered 
once and either labelled spurious and discarded or labelled good and kept with the 
estimate of its error. The current implementation uses Lanczos matrices of size 
m = 50. Not much additional information is obtained by increasing m, which is to 
be expected because the effect of the choice of a particular shift & is localized to 
some subset of the eigenvalues near &. 

In contrast to the Rayleigh quotient inverse iteration RQII scheme, a Lanczos 
procedure offers the possibility of computing many eigenvalues at a time, and it 
does not require any starting values for the eigenvalues to be computed. A more 
general procedure can be constructed. First, a Lanczos scheme is used which 
incorporates a shift and invert strategy where the shift is varied from iteration to 
iteration. This Lanczos procedure produces eigenvalue approximations with 
different levels of accuracy. Second, these approximations are then fed into an RQII 
scheme which transforms them into more accurate eigenvalue approximations and 
simultaneously generates the corresponding eigenvectors. This combined procedure 
works in a user-specified box in the complex plane. The shifts used by the Lanczos 
part can be automatically generated by the program or be supplied by the user. 

In general, a shifted and inverted nonsmmetric Lanczos procedure cannot be 
expected to provide uniformly highly accurate approximations. Errors in the 
factorization limit the amount of information which can be obtained for two 
reasons. First, small perturbations in nonsymmetric problems may cause large 
perturbations in the eigenvalues, so errors in the factorization may yield results 
considerably different from the desired numbers. Second, if the factors are ill- 
conditioned, the error propagation within the Lanczos recursions may destroy the 
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relationships between the Lanczos matrices generated and the original shifted and 
inverted problem, in which case those matrices will not be accurate reflections of 
the given problem. If however the factorization is accurate, consistent, and well- 
conditioned, then the Lanczos procedure will provide excellent results. Additional 
details and numerical results are provided in Cullum, Kerner, and Willoughby 
[47]. Here two subspectra for the magnetohydrodynamic problem are displayed. 
The complex spectrum of the Alfven branch is computed by running the Lanczos 
procedure in a mode that generates shifts automatically, see Fig. 3.2. The same 
equilibrium is analyzed in Fig. 4.14 by inverse iteration. The comparison yields that 
the Lanczos scheme produces the entire eigenvalue curve in one run with sufficient 
accuracy. This curve has been produced by inverse iteration by means of many 
appropriate shifts successively. For this equilibrium the slow mode branch and the 
Alfven mode branch overlap for finite pressure. The results shown in Fig. 3.3 reveal 
that both eigenvalue curves can be computed simultaneously. 

Comparison with inverse iteration, Fig. 4.17, again demonstrates the accuracy of 
the Lanczos scheme. By these results it has been demonstrated that nonsmmetric 
eigenproblems can be solved efficiently and accurately by the Lanczos method. It 
is emphasized that the cases treated possess complicated complex spectra. There- 
fore, the Lanczos scheme without orthogonalization is recommended for general 
use. 

(vi) Rayleigh quotient iteration 

1. Hermitian case. An alternative iterative approach for finding the lowest 
(or highest) eigenvalue of the symmetric eigenproblem Ax = ilBx is based on the 
minimization (or maximization) of the Rayleigh quotient 

p(x) = x=Ax/x=Bx 
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FIG. 3.2. The resistive Alfven Spectrum for q = 5 x lo-’ and N= 375 intervals (d= 4498) computed 
simultaneously by the unsymmetric Lanczos scheme with no reorthogonalization. All eigenvalues are 
correct, i.e., converged, and agree well with the results computed successively by inverse iteration in 
Fig. 4.14. 
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FIG. 3.3. The complex spectrum of the Alfven and slow mode branch for an equilibrium with linear 
profiles, q = 6 x 10-j and N = 375 (d= 4498) computed simultaneously by the unsymmetric Lanczos 
scheme with no reorthogonalization. All eigenvalues are correct, i.e., converged, and agree well with 
these computed successively by inverse iteration in Fig. 4.17. 

with respect to the trial vector x. One procedure is the gradient method, where x 
is adjusted by adding to it an appropriate multiple of the gradient 

VP(X) = 2(A - Bp(x))x/(x=Bx). (3.68) 

This can be put into relaxational form. This method is combined with root-shifting 
for higher eigenvalues and is described in the paper of Shavitt, Bender, Piano, and 
Hosteny [49]. The matrix vector multiplication Ax can be performed simply by 
bringing rows of A into the fast memory, but not the entire matrix. If the number 
of eigenvalues sought, m, is small and if the eigenvalues are well spaced, the LU 
factorization may not be necessary and iterative methods can be used. This is 
especially the case for solutions of Schrodinger’s equation. Let us begin with the 
Hermitian problem Ax = 1Bx. In order to provide reasonable input guesses to the 
iteration problem, one partitions the Hamiltonian matrix H (called A above) into 
an unperturbed part H, of small dimension n, and the rest, i.e., m Q n, 4 n. One 
directly diagonalizes Ho E W” x no and uses the result as input to the iterative proce- 
dure. The first step is to use any of the exact methods described to find the lowest 
m eigensolutions of H,. Next, the basis of eigenvectors of H,, {b’p’, . . . . b:i’} is 
extended by vectors bj. 

The approximate eigenvector will converge to the exact solution as one adds 
more and more vectors. In each 
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The method of Davidson [48]-see also the papers of Shavitt et al. [49], 
Butcher and Kammer [SO], and Coope and Sabo [Sl ]-is based on the fact that 
for some x E R” the Rayleigh quotient has a minimum at the vector corresponding 
to the lowest eigenvalue and a saddle point at every eigenvector of A. If one compo- 
nent of x, xi, is varied by 6,, its optimum choice from 

is simply 
s;= (pBii-Apqi, (3.71) 

where q= (A-pB)x and p is evaluated at x +diei. 
The lowest eigenvalue can be computed with p in Eq. (3.71) approximated by 

p(x). This scheme, however, does not converge for the higher eigenvalues and for 
simultaneous change of all xi. The alternatives to the method of optimal relaxation 
are the gradient and power methods. Moving along x + LYV~ is equivalent to 
moving along x + aAx. Expansion in an orthogonal basis is convenient. Hence the 
final scheme is a combination of the Rayleigh quotient iteration defined in 
Eqs. (2.16) and (3.68) and the basis extension method defined by Eqs. (3.69) and 
(3.70): 

For M> n, the eigenvalue problem (3.69) is solved and ni”) and ui”‘j’ is the 
eigenpair. This solution yields an approximation of the eigenvector xi”“) using czti 
as expansion coefftcients for the basis vectors in [w”. A new vector 

with 

,$M+ 1) = D(A - $M-“’ EQXiM) (3.72) 

D,= &/(I, ‘“‘Bq-Ao) (3.73) 

is computed. Next, the basis vector biz”) is obtained by Schmidt orthogonaliza- 
tion of 5 CM+ I) to all M expansion vectors already present. Finally, the matrices 
R S E [WM + l,“+ ’ are formed 
until convergence is achieved. 

with the present basis vectors and the step is repeated 

The matrix R yields the projection of the eigenvector Ax onto the basis vectors, 
which are made S-orthogonal. The dimension of the submatrices R and S which 
are diagonalized increases by one in each iteration step. In the limiting case M -+ n 
the eigenvalues are identical to those of the full problem. But in practice con- 
vergence is achieved after a few iterations M 4 n. The actual implementation requires 
some refinement, which is described in the corresponding papers. A recent survey 
of this class of iterative solvers is presented by Wood and Zunger [52]. 

In this procedure the matrix-vector multiplications take n* operations and the 
matrix diagonalization M3 operations. The computing time required to find the m 
lowest eigenvalues then scales as 

T,,,~t,~I~n*+t, 1 M:, (3.74) 
i= I 
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where I is the number of iterations, Mi = n, + i, and t, and t, are constants to be 
determined by actual runs. Generally, the multiplications are the dominant step. 
The number of iterations depends on the proper choice of the M basis vectors, as 
pointed out by Davidson [48a]. 

Under unfavourable conditions many iterations may be required, In this case 
inverse iteration and the Lanczos procedure will be more efficient and more 
accurate. 

To give a fair view of recent developments, it should be noted that the solver 
by Kosugi [53] is a modification of Davidson’s method; a splitting scheme is used 
by Nex [54] and a Lanczos-type algorithm for the generalized eigenproblem is 
presented by Kalamboukis [ 551. 

2. Non-Hermitian case. The iterative methods discussed can be generalized to 
the non-symmetric eigenproblem Ax = 1Bx. Davidson’s method is applied to 
yield right-hand eigenvectors xi and left-hand eigenvectors gi which obey a 
bi-orthogonality relation. Usually complex vectors evolve. A subsystem of 
dimension M is solved: 

(R-~~;U’S)X~‘+‘~=O, (3.75a) 

(R”-~~%)l?I;U)=O. (3.75b) 

It is emphasized that the approach of Rettrup [56] (only real eigenvectors) and of 
Hirao and Nakatsuji [57] assume real eigenvalues. These approximate eigenvalues 
are improved by extending subspaces, i.e., by adding new vectors b, + i and b,,,, + i. 
This approximation is improved by adding vectors 5 and t to it, which are 
computed according to Eqs. (3.72) and (3.73). 

The approximate residual vectors are 

ki”+“= (/$“‘)B,,- Al,)p’qI,M, (3.76a) 

~:~+~)=(IZ~~)B,,-A,,)-~~,.~, I= 1 2, . . . . N, (3.76b) 

with 

q,,,, = (A - $““B)x~~), (3.77a) 

ijM = (A” - 2~“)B).Z~M). (3.77b) 

The vectors are bi-orthogonalized with respect to B. If nlf”’ and XI;“’ are an exact 
eigenvalue and eigenvector pair, it follows that q,,,, = 0. Thus q, measures the 
accuracy of the iterated solution. Convergence is achieved if the norm of q, and Qm 
become less than a given tolerance. Since the method requires only the multiplica- 
tions A. xi, B . xi, and AH. jz,, it is well suited to large problems; especially sparse 
matrices can be efficiently handled. Results for the lowest and second lowest roots 
of a matrix of dimension n = 1129 (triplet A, state of H,O) are presented in the 
paper. Convergence is achieved after fewer than 25 iteratins with the tolerance 
lh.&Al < 1v6. 
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(vii) Initial- Value Formulation 

The general eigenproblem often arises from a time-dependent problem where the 
discretizations yield the matrix equation 

Ax=B$ (3.78) 

and x = x(r, t). With the ansatz 

x(r, t) = e”x(r), 

where II is the eigenvalue, the general eigenvalue problem occurs. For non- 
symmetric A the decision about a physical instability (Re A> 0) is difficult, as the 
discussion in Section 2.D has revealed. Especially, the inertia of a general matrix is 
a very costly calculation. If one is prepared to do the same amount of computation 
as is spent on inverse vector iteration, there is a straightforward and quite simple 
way of finding the exponentially growing unstable solutions. Equation (3.78) 
presents a system of linear ordinary differential equations. The simplest integration 
scheme for the first-order system (3.78) is the explicit Euler scheme 

a n+l=an+Ati”, (3.79) 

where n denotes the time step, i.e., t = t, + n At. This yields the integration formula 

a n+l = (At B-‘A+Z)a”. (3.80) 

This method is only conditionally stable. Numerical stability limits the time step to 

2 
At<- 

1 = Atstab, (3.81) 
max 

where A,,, is the maximum eigenvalue of the system Aa = JBa. In MHD problems 
the largest eigenvalue is given by the fast magnetosonic wave owing to the shortest 
radial scale Ar and hence tends to infinity if Ar goes to zero and the 
Courant-Friedrichs-Lewy (CFL) condition (3.81) is not acceptable. This CFL 
condition can be improved by adopting an implicit scheme defined by 

a n+l=,n+Ati”+l, (3.82a) 

which is unconditionally stable. We adopt the generalized trapezoidal method 

a n+ ’ = an + At( 1 - o)S + At OS’+ ‘, (3.82b) 

with parameter o, which reduces to the explicit formula (3.79) for w = 0 and to the 
implicit formula (3.82a) for w = 1. For o = 0.5 it is the standard trapezoidal rule. 
The algorithm for the time advance then assumes the form 

Aa n+‘:={-B+oAtA}a”+l=Ba”:=-{B+(l-w)AtA}a”. (3.83) 
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This time integration is conditionally stable for o < 0.5 with At < 2/( 1 - 2w)&,,,, 
and unconditionally stable for o > 0.5. The scheme is first-order accurate, except for 
w = 0.5, where it is second order. It is thus desirable to set w 3 0.5. The matrix 
manipulations necessary for an implicit scheme usually present a serious problem 
both for the coding and for the efficiency of the algorithm. Sometimes the explicit 
scheme is preferred because of its simplicity, in spite of the CFL condition. For the 
linearized problem addressed here the matrix computation does not pose a severe 
problem, since the band structures of the matrices A and B are utilized in the algo- 
rithm. The matrices have block-diagonal structure with a blocksize b (e.g., b=23) 
resulting in an overall band width of 26 + 1 (e.g., 47). 

Given the matrices A and B of Eq. (3.83) the scheme for inverse iteration is 
applied, see Kerner et al. [58]. The temporal evolution of the initial vector a, is 
monitored by the kinetic energy K to display the growth rate and by a specific 
component of a to display oscillations. Usually, the first component is chosen. 

The vector a is a real vector. The formulation as an eigenproblem requires a 
complex vector a to represent imaginary and complex eigenvalues ,?, and hence 
the algorithm for inverse vector iteration requires a complex shifted matrix 
A’ = A - 1, B. In comparison with the eigenvalue formulation this scheme is more 
economical with respect to storage. On the other hand, inverse vector iteration 
usually requires fewer iterations than the initial-value method. 

Next we estimate the CPU time necessary for the algorithm. For NT iterations 
there are, according to Eq. (3.25), then 

N,=N,+NT.N,-d.b(b+NT) 

operations required. Usually, the number of time-steps is larger than 50 and, 
because b is fixed b = 47, the CPU time is approximately linear to both the number 
of time steps NT and radial intervals N, 

t(CPU) = aN(a’ + NT) N aN. NT, (3.84) 

with a = 3.9 x lop4 and a’ = 69. A typical case with 50 radial intervals and 500 time 
steps then needs - 12.7 s on the CRAY-1. The most unstable mode evolves from 
an initial perturbation, which is usually chosen by random initialization. If the time 
step At is chosen such that A, At < 0.2, the growth rates obtained from the eigen- 
value and from the initial-value problem agree better than 0.1%. 

C. Non-Linear Eigenvalue Problems 

The typical equation of motion is second order in time and hence a quadratic 
eigenproblem arises. The physical and engineering problems can be put in different 
forms. Especially, the combination of fluid and kinetic models leads to more general 
eigenproblems, which are receiving increasing attention. The generalized non-linear 
eigenvalue problem is addressed as 

(2’A,+.1’-‘A, , + ... +1A, +A,)x=O. (3.85) 
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As noted by Peters and Wilkinson [59], surprisingly few algorithms which are both 
stable and economic have been proposed. When A, is non-singular, problem (3.85) 
is equivalent to the, standard eigenvalue problem for the matrix of order N= r. n 
defined by 

P= 

0 I 0 0 
0 0 z 0 
0 0 0 I 
Bo B, B, B, 

7 Bi= -A;‘Ai, (3.86) 

where the case r = 4 is used for illustration. 
This method has the disadvantage of working with a matrix of order r. n. But the 

QR and the other algorithms discussed can be applied directly. It is noted that for 
the quadratic problem, I = 2, this method is indeed very attractive; see also the 
approach by Davis [60]. 

If A, is singular, but not A,,, one may set /i = l/1 and one proceeds in the 
obvious way. The case where both A, and A, are singular is discussed in [59]. 
Moler and Stewart [ 173 emphasize that by the QZ the generalized problem (3.85) 
can be solved in the form of Eqs. (3.88) and (3.88b), i.e., without inverting A,. 

The application of QR or QZ has the disadvantage that r*n* storage locations 
are required, whereas at most (r + l)n* input data are given. The straightforward 
way for computing eigenvalues of Eq. (3.85) is to solve the characteristic equation 

det( I’A, + . . . + AA, + A,) = det(& 2) = 0, (3.87) 

i.e., for a given ,J E @ the determinant is evaluated from the corresponding n x n, in 
general complex, matrix. This can be done by Gaussian elimination with partial 
pivoting. This may be a very difficult and numerically unstable procedure. Miiller’s 
method is recommended in Ref. [59]. If the matrices are sparse and have structure, 
this fact can be utilized to transform A to a special form where the determinant can 
be computed with better accuracy. This holds especially in the case that the 
matrices are composed of sub-blocks so that the evaluation of the determinant can 
be achieved through evaluation of determinants of the corresponding sub-blocks. If 
the root finding is performed in this fashion, a continuation parameter tl should be 
employed and a particular root (or roots) is traced as a function of CI. If tl is varied 
slowly, then a good approximation to the eigenvalue is known from the results at 
previous values of ~1. In practice, this scheme has proved somewhat less successful 
than had been hoped. Unless a is varied quite slowly, it is surprisingly easy to drift 
from one eigenvalue to another. 

A very successful method of tracing the history of an eigenvalue is inverse itera- 
tion. This has the advantage of giving the history of the corresponding eigenvector 
at the same time. More details have been presented in the discussion of the algo- 
rithm in Section 3.B. For solving problem (3.85) inverse iteration is performed on 
the system 

Fx = ~Gx, (3.88) 



42 W. KERNER 

with F and G defined as with F and G defined as 

F=(_o jAl ,; -;), G=[ ’ ,.i. W8b) 

Peters and Wilkinson report better results for tracing eigenvalues by inverse itera- 
tion than those obtained by Muller’s method. Non-linear eigenvalue problems have 
been treated recently by Arbenz and Gander [61] and Wobst [62]. For an 
extended discussion of recent work, the book of Gohberg, Lancaster, and Rodman 
[4] is recommended. 

The theory of linear wave propagation lgds to a dispersion relation which is 
transcendental in the relevant complex propagation constant k and thus poses a 
difficult complex eigenvalue equation. Typically, such problems reduce to a system 
of homogeneous linear equations of the form 

A(k)d = 0, (3.89) 

where A(k) E @” xn is the coefficient matrix, with all elements usually being func- 
tions of k and dg C” is a constant matrix with at least one of the elements dj 
arbitrary. For a non-trivial solution the determinant must vanish: 

det(A(k)) = 0. 

A computer-aided contour search technique for finding the roots, called the method 
of eigenvalleys, has been presented by Scarton [63]. 

The complex function E(k), 

E(k) = det(A(k)), (3.90) 

maps k E @ into @. For k to be a solution of Eq. (3.89), both real and imaginery 
parts of E must vanish simultaneously. A simpler equivalent condition is to require 
the magnitude of E to vanish: 

1 E(k)1 = 0. 

This function has real, positive values. The method consists of first plotting level 
curves of the continuous characteristic surface E(Re(k), Im(k)), called an eigen- 
surface, over some predefined region of complex k space. In this eigensurface all 
concave upward regions will contain eigenvalues at their base and are, thus, 
called eigenvalleys. An eigenvalley contains one and only one solution (in the 
non-degenerate case). 
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Once the coordinates of the eigenvalleys in the plotting region are visually 
located, the exact location of the base of the eigenvalley can be computed by a 
minimization algorithm, where pattern search is done. 

D. SOFTWARE AND HARDWARE 

The solution of an eigenvalue problem basically requires similarity or unitary 
transformations, LU factorization or matrix-vector multiplications Ax. It is 
desirable to organize the code in a modular way, so that the subroutines can be 
applied to many different problems. 

Another aspect in designing a program is machine-independence, so that codes 
can be used in different laboratories. These criteria suggest using library programs 
and highly efficient basic packages. Prominent candidates are the EISPACK [12] 
and LINPACK [13] routines using basic linear algebra subprograms (BLAS). 
Major progress in computer efficiency has been achieved over the past decade by 
the introduction of vector computers. Our experience in this field should therefore 
be discussed. 

The use of QR and QZ from EISPACK has, on the whole, been very satisfactory. 
For large matrices addressing MHD spectra, however, accuracy problems arise in 
some cases which require recording for their solution. The efficiency on a vector 
computer such as the CRAY-1S or CRAY-XMP reveals some shortcomings in the 
vectorization of the routines. To our surprise, we have been able to reduce CPU 
time by 2&40% by reorganizing the code, enabling more loops to vectorize. 

Next, the use of LINPACK is commented on. The eigenvalue solver based on 
inverse iteration as discussed in Section 3.B uses LINPACK and BLAS routines. 
This makes the coding relatively simple and the algorithm can easily be imple- 
mented on different computers. The efficiency on a CRAY-1 was analyzed by 
Partovi and Gruber [64]. In solving a full system of linear equations it is shown 
how the speed of an ordinary LINPACK routine can be doubled by recoding in 
FORTRAN and be quadrupled by using CRAY Assembler Language (CAL). 

It is examined how a full system of linear equations can be solved efficiently on 
a CRAY-1. One of the major bottlenecks preventing high power on such a com- 
puter is the access to the main memory. There is only one channel for reading from 
or storing to the memory. The number of memory accesses for a given number of 
vector operations often determines the megaflop rate of an algorithm. To increase 
the computing power, one has to reduce the number NA of memory accesses. This 
is exactly the objective when the coding of the GAUSS program is modified to 
obtain peak power. 

In a first step, the decomposition of a matrix A = LR into a left triangular matrix 
L and a right triangular matrix R is done in the same way as reported in the 
LINPACK manual [ 131. To compare the number of memory accesses between the 
different programs, they are normalized to NO = 8 vector operations. In the original 
LINPACK package, the number of memory accesses for NO = 8 vector operations 
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was NA = 12. It is shown that NA drops to NA = 8 when two unknowns are 
eliminated at once (see CRAY manual 2). By unrolling for two instructions and 
using a temporary vector, NA = 6 is obtained. Finally, NA drops to 4 when CAL 
is used. The computing power to solve for a full 400 x 400 matrix problem varies 
from 39 Mflops (for LINPACK) to 124 Mflops (for CAL without chaining). This 
result once more emphasizes the importance of highly optimized linear algebra 
subroutines available to the common user. 

The limitation of computer memory forces the implementation of out-of-core 
algorithms, where data are stored externally and read in when needed. Inverse 
vector iteration by Kerner et al. and the Davidson algorithm rely on such a data 
transfer. Naturally, this slows down the performance. The development of super- 
computers having many processors with a total computing power exceeding 1 
Gflop (> lo9 floating point operations per second) and memories in the range of 
64 million to 256 million 64-bit words offers new possibilities and forces us to adopt 
the algorithms to the architecture of these computers. Access to externally stored 
data is then not necessary or I/O can at least be substantially minimized and the 
limitation on matrix computation is imposed by CPU time. Fully three-dimensional 
configurations with 100 mesh points in each direction are then tractable. Finite- 
element and finite-difference schemes yield coupling only between neighbouring grid 
points, introducing sparseness into the matrices. This leads in a natural manner to 
smaller size submatrices, e.g., in a block-tridiagonal pattern. Another promising 
feature of modern supercomputers is the increasing number of processors. Several 
(two and four in the present CRAY computers) or many parallel processors (e.g., 
SUPRENUM) can considerably increase the speed, especially since many sub- 
matrices will be treated. It must be expected that optimal performance will be 
achieved only by adapted programming. Solution of a block-tridiagonal system of 
equations by applying two processors has been studied by P. Partovi [64]. The 
program has two steps, namely forward reduction of the tridiagonal system, with 
the diagonal blocks as pivots, and solution. The fundamental idea is to use very 
efficient Assembler Language Routines such as MINV for matrix inversion and 
MXM for matrix multiply. Decomposition is performed in parallel from the top 
and the bottom. Backsolve is done by starting in the middle and advancing in 
parallel to the top and bottom. The increase in performance is reported to be better 
than 1.5, i.e., close to the optimum value of 2, when two processors instead of one, 
are used. 

Anderson et al. [65] recently built a new code, PAMS (Parallelized matrix 
solver), that embodies a multitasked cyclic reduction procedure and uses fast 
vendor supplied routines. The global matrix problems are represented by the two- 
level structure of a big matrix composed of block elements. Calculations within 
blocks are treated by highly optimized vector coding, while calculations at the 
global level are multitasked to the extent possible. The solution of problems with 
block-tridiagonal structure and dense sub-blocks is analyzed. The solution of a 
linear system is discussed and the case for N = 7 is treated explicitly. 

Hence there are seven block equations: 
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bix, + c:x, =d;, 

u;xl + bix, + c;x3 =d;, 

a:x* + bix, + c:x‘g =d:, 

a:x3 + bix, + c;x, =d;, 

a:x, + bix, + c:xe =d;, 

akx5 + bix, + c;x, = di, 

aix6 + b$x, = d:. 

(3.91) 

This system of block matrix equations can be solved by cyclic elimination techni- 
ques. In words, substitution is used to eliminate all of the odd-numbered equations, 
which in the first stage of reduction leads to a global system of rank = 3 in terms 
of the number of blocks. Repeating this procedure again leads to a rank = 1 system 
that can be solved directly by using techniques appropriate to dense elementary 
matrices. Since the formulae of substitution used in the elimination procedure are 
all saved, one can obtain all of the unknown subvectors xi from the solution of the 
rank = 1 system. This process proceeds through several stages, labelled k, 

k = 1, . . . . (log, N). 

Within each stage we eliminate all of the xi given by 

j=(2i-1)2k-i, 
N+l 

i = 1, . ..) - 
2k . 

The notation (log, N) is to be interpreted as meaning the greatest integer bounded 
by log, N. 

Proceeding with the case at hand, where N = 7, we write out the solutions of the 
odd-numbered sub-vectors by inspection of Eq. (3.91). That is, at the first level of 
reduction we get k = 1 and i= 1, 2, 3, 4. We thus eliminate the sub-vectors x,, x3, 
x5, and x, by solving the odd-numbered block rows to obtain 

x1 = (b;)-’ (d; -c;x,), 

x3 = (6:)-l (d; - u:x2 - c;x4), 

x,=(b;)-‘(d;-a;x,-c;x,), 

x, = (b;)-’ (d; - u;x6). 

(3.92) 

By substitution of Eqs. (3.92) into the remaining, even-numbered block rows we get 

6:x, + c;xz, =df, 

a;x2 + b;x4 + c;x, = d;, (3.93) 

a:x4 + b:x, = d:, 



46 W. KERNER 

where the second-order coefficients, e.g., bf, are uniquely defined by first-order 
ones, e.g., 

bf= b: -a;(b;)-’ c; -c;(b;)-’ a;. (3.94) 

The system in Eqs. (3.93) is of the same form as the original problem but has the 
lower rank = 3. This suggests, by induction, that one can successively reduce the 
system until its rank is one. The solution of such a simple system then leads to all 
the other solutions by way of the substitution formulae, such as those given in 
Eqs. (3.92). 

It turns out that the formulae of Eqs. (3.94) are not independent because the b 
inverses couple many of them. But there is sufficient independence to allow multi- 
tasking. 

We now proceed to the second level of reduction, in which k = 2 and i = 1, 2. We 
thus solve the odd rows from Eq. (3.93) to get 

x2 = (b:)-’ (d; - c:x,), 

x,=(b:)-’ (d:-a;x,). 
(3.95) 

By substituting these into the even row(s) of Eq. (3.93) we obtain a single equation 
for x4: 

b;xq=d;. (3.96) 

Here, the coefficients at the next level are 

(3.97) 

The operations in (3.97) are treated in two stages just as was done for Eqs. (3.94). 
There is less opportunity for multitasking here because one can see that the first 
stage only admits two independent tasks and the second stage just one. 

At this point we have completed the reduction phase of the calculation by reduc- 
ing our original rank N= 7 system of blocks down to a single block equation. We 
solve this equation to obtain xq either by inversion or by factorization. Clearly, this 
step cannot be multitasked. 

What is called the synthesis phase of the calculations begins here. Using the 
several formulae already developed, we rapidly generate all of the other sub-vectors 
from x4. This is done by evaluating Eqs. (3.95) next to find x2 and x6 by using the 
inverse representation already computed (and saved) for the operators (bf)-’ and 
(bi)- ‘. The two tasks found here allow some parallel operation via multitasking. 

Lastly, we perform the operations of Eqs. (3.92) to obtain the remaining 
unknown sub-vectors xi, xX, x5, and x7. Four tasks exist here which allow full 
multitasking on the four-processor CRAY-2. 
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With regard to what can be multitasked, we have identified two stages at every 
level of reduction and one stage at every level of synthesis. If one does an operation 
count, one finds almost all of the work is done in the reduction phase. The formula 
for the maximum multitasking overlap that can be achieved reads 

4N M=---- 
5+N 

and M assumes for N = 64 block rows the value M= 3.7. This value comes close to 
the maximum of 4 and confirms that multitasking cyclic reduction is a viable 
technique. Within the tasks, linear algebra subroutines (BLAS) are used, which are 
highly optimized by exploiting vectorization. The theoretical performance of the 
CRAY-2 is 1.95 Gflops. In unitasking mode, speeds of about 340 Mflops have been 
measured; in multitasking mode using four processors, average speeds of 1.1 Gflops 
have been achieved for the entire PAMS algorithm. This study demonstrates the 
potential of multitasking computers. 

Multigrid is a powerful scheme to solve large systems of equations efficiently by 
switching between coarse and fine grid, This technique in conjunction with multi- 
tasking on many parallel processors may improve future computer performance for 
linear algebra problems by orders of magnitude. 

4. APPLICATIONS 

The theory of linear algebra yields algorithms for solving eigenvalue problems as 
well as linear systems. Specific schemes especially suitable for large-scale systems 
and details of the implementation on computer have been emphasized. These tools 
for matrix manipulations have to be complemented with the appropriate numerical 
discretization of the problem, eventually yielding the matrix elements. Obviously, it 
is possible to obtain good and bad numerical approximation of a given problem. 
At this point the computational physicist or engineer needs a great deal of insight 
into the mathematical and physical properties underlying the model. 

Applications from the fields of quantum mechanics, engineering, hydrodynamics, 
and plasma physics are presented and discussed. The selection of these topics was 
prompted by various aspects: The natural extension from symmetric to non- 
symmetric eigenproblems should be made clear. The discussion of the finite-element 
discretization, e.g., for Schrodinger’s equation, should stimulate application of this 
method. In the computation of molecular spectra very large matrices are processed. 
It therefore appears worthwhile to reconsider the expansion in local and global 
basis functions. The general equations of mechanics with dissipation included define 
the model for many engineering problems. The solutions are based on the finite- 
element method with packages for large-scale matrix computations included. In 
hydrodynamics, the study of the planar flow leads to a linear eigenproblem for the 
temporal evolution and to a quadratic eigenproblem for spatial stability. 

581/85/l-4 
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The most detailed analysis is made in plasma physics, where the entire complex 
MHD spectrum is computed. In order to make this section self-contained, an intro- 
duction to plasma physics and to the basic phenomena required for understanding 
the spectra is given. The step from the normal-mode analysis to the forced problem 
addressing Alfven wave heating is quite simple from the numerical point of view 
and significantly contributes to the interpretation. 

A. Quantum Mechanics 

The temporal evolution of the wave function of the system, Y, is determined by 
Schrodinger’s equation, 

(4.1) 

where H is the Hamilton operator. Stationary states are obtained by introducing 
the separation ansatz 

Y(r, t) = Y(r) exp (4.2) 

where E denotes the energy, yielding 

(E-H) Y=O. (4.3) 

For an n-particle system the time-independent Schriidinger equation has the form 

(E- Wr,, r2, . . . . r,)) Y+($2)~djY(r,, . . . . r,)/mj=O, (4.4) 

where W is the potential energy. This equation has to be completed by appropriate 
boundary conditions, e.g., Y vanishes at infinity. The corresponding variational 
formulation is obtained by multiplying Eq. (4.4) by Y and integrating over R3n, 
where integration by parts is performed: 

If the boundary conditions are generalized to hold on the surface of a subset 
VE R3”, an appropriate term is added to Y(Y). The Euler equations derived from 
the extremum condition of the functional Y(Y) are the Schrodinger equation 
together with the boundary condition, and the value of Y(Y) equals zero for a 
proper solution (E, Y). This variational formulation allows one to treat bound 
states, for which Y often vanishes at the boundary aI’ and for which the surface 
integrals vanish, and also to treat scattering states. In the latter case, the energy has 
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a given value and the surface-matrix term is the desired quantity. The variational 
formulation is directly suitable for application of the finite-element-method. The 
function Y needs totbe expanded into function of Co, which are piecewise differen- 
tiable, since only first derivatives occur in Y(y), but higher order approximations 
are more economical. The finite element method has been applied to problems in 
one, two, and three dimensions, see Schulze and Kolb [70], Friedman et al. [71], 
and Levin and Shertzer [72]. 

These results obtained by the finite-element method are quite promising, in that 
a moderate-sized basis gives high accuracy. These investigations are interesting in 
themselves and give evidence that realistically screened Coulomb cases can also be 
handled. Another aspect for this calculation is the use of two-electron eigenfunc- 
tions as basis vectors, besides the hydrogen eigenfunctions, for really large-scale 
computation of molecular spectra. Finite-element calculations involving more than 
three variables quickly exceed the capability of the present computers. A calculation 
for helium-like atoms embedded in dense plasmas is presented by Hashino et 
al. [73]. 

The eigenvalue problem for these bound states can be characterized as a 
relatively simple one since the lowest eigenvalues are well separated and require 
only a few expansion functions for an approximative value. Since the energy levels 
are required usually up to more than six figures, owing to the fact that the observed 
spectra are really differences of eigenvalues, large matrix dimensions evolve. These 
eigenproblems are most efficiently solved by the Lanczos algorithm and by the 
Rayleigh quotient iteration (Davidson algorithm). Matrices with dimensions of up 
to d- 10’ are reported. Self-consistent numerical solutions of the Poisson and 
Schrodinger equations for the states of electrons under a narrow gate or under a 
narrow slit in a metal-oxide-silicon structure are given by Laux and Stern [74], 
Laux [75], and Smith et al. [76]. 

A standard five-point finite-difference approximation is employed, leading to the 
symmetric eigenvalue problem Hy = Ey, which is solved by the Lanczos method 
or by a Rayleigh quotient iteration. The dimension of H is in the range 
2000 d N < 5000. A typical result is shown in Fig. 4.1. The consistency between 
the Poisson and the Schrodinger solutions is obtained iteratively with typically 
50 iterations. 

Recently, the Lanczos algorithm was applied to quantum dynamics via the recur- 
sive residue generation method (RRGM), which is described by Friesner et al. [77]. 
Non-symmetric eigenproblems arise in the symmetry-adapted cluster theory (SAC) 
for excited states. The variational SAC solution gives an upper bound to the exact 
energy. This procedure, however, includes matrix elements between unlinked 
clusters, leading to computational difficulty in form of a very complicated system of 
non-linear equations. The non-variational SAC treatment can be derived by 
projecting the Schrodinger equation onto a subspace spanned by the reference 
function and linked clusters and does not involve matrix elements between clusters. 
This formulation leads to the computation of real eigenvalues and eigenvectors of 
large, non-symmetric matrices. This eigenvalue problem is solved by a Rayleigh 
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FIG. 4.1. IBM 3090 (uniprocessor, with vector attach) CPU time versus number of eigensolutions 
computed using the Lanczos algorithm. The matrix order is N. 

quotient iteration, i.e., an extension of the Davidson algorithm. Results are 
discussed in the paper Hirao and Nakatsuji [78] and Nakatsuji et al. [79]. 

The problem of electron diffraction requires finding the wave function Y(r) for an 
electron propagating in a periodic medium, which satisfies the SchrGdinger equa- 
tion, where W(r) is the potential energy of the electron in the crystal and E is the 
total electron energy. A non-symmetric eigenvalue problem arises with complex 
eigenvalues determining the wave vector of the Bloch waves. 

The decay of a state can be described by a complex eigenvalue in the Schradinger 
equation, where A= -(f/2 + iE/ft) is the complex eigenvalue, which has to be 
inserted into Eq. (4.2). 

B. ENGINEERING 

The dynamics of a structure is described by a system of non-linear differential 
equations of order 2f in the generalized coordinates x = (x, , . . . . xf) as 

M(x(t), t) ji + &x(t), k(t), t) =O, (4.6) 

where M E (wfx./ is the mass matrix and g E K!< In the case of an equilibrium state 
x = 0, j, = 0 which yields g = 0, the small motion of this equilibrium is studied and 
by linearization the system reads 

M(t) ji + P(t) A + Q(t) x = h(t). (4.7) 

For holonomic systems, Lagrange’s equation of motion has the typical form 

Mji+(G+C)k+(K+H)x=h(t), (4.8 1 

where M denotes the mass inertia matrix, K the stiffness matrix, and C the damp- 
ing matrix; these three matrices are typically symmetric and from physical assump- 
tions M and K are positive semi-definite. The other two matrices, G the gyroscopic 
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(Corioli’s) matrix and H the circulatory matrix, are skew-symmetric. The forcing 
function h(t) represents the load on the structure. Clearly, the system (4.8) can be 
reduced to a first-order system for the state vector wT= (x, a), w E lR*/. 

The dynamic equations of motion for free, undamped, or natural vibrations 
simplifies to 

MS+ Kx=O. 

The finite-element method leads to the general matrix eigenvalue problem 

K$ = lMt$. (4.9) 

The eigenvectors 0 are the vibration mode shapes of the structure, the eigenvalues 
Li are the squares of the natural frequencies oi, and the pair (&, Qi) is a normal 
mode of the structure. Usually the (free) vibration eigenproblem is a sparse, 
generalized symmetric problem for which only a few, typically the lowest, eigenpairs 
are sought. 

The eigenproblem associated with damped vibration is a quadratic eigenproblem 
with complex eigenvalues. But it often suffices to model damping with a matrix 
that is simultaneously diagonalized with K and M. This retains the uncoupling 
properties of the vibration problem and can be realized by choosing some form of 
proportional damping: 

C=ctK+j?M 

or 
c = I@~’ for some diagonal matrix Z. 

Gyroscopic effects are very important to the analysis of rotating shafts. Such 
problems are relatively uncommon, but models that do not include damping permit 
a related 2n by 2n generalized symmetric eigenproblem to be derived. 

Other models do not result in generalized symmetric eigenproblems. In many of 
these cases the solution of the vibration problem is used to provide a reduction in 
order for the differential equations even though the equations are not decoupled. 
There are yet other problems for which the solution of an unsymmetric generalized 
eigenproblem is important. An area of particular importance in aerospace applica- 
tions is structures interacting with control systems. These lead to large, sparse, 
unsymmetric generalized eigenproblems. The stability problem is as important here 
as it is in other control applications, but the matrices are of much larger order. 

The buckling eigenproblem arises in a different engineering context. The usual 
displacement models for constant forces result in the static equation 

Ku=f, 

where K is again the stiffness matrix, f is the (constant) external force, and u is the 
resulting displacement of the structure. The static equation is derived on the linear 
assumption that the stiffness of the structure does not depend on the force. In the 
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analysis of buckling structures, the stiffness is obviously in a non-linear regime. The 
buckling eigenproblem differs from the vibration problem in several respects. 
Although K is again a positive semi-definite matrix, the corresponding M is a 
symmetric indefinite matrix. 

The list of problems described by the system (4.8) includes the motion of rigid- 
body double pendulums, gravitationally stabilized satellites in orbit, vertically 
vibrations of an automobile, and elastically supported rotors (see Miiller [69]). 
The numerical algorithms to solve system (4.8) lead to the general eigenvalue 
problem Eq. (4.9). Since only a few, typically the smallest, eigenvalues are sought, 
inverse iteration or the Lanczos algorithm is most efficient. For symmetric eigen- 
problems these methods are standard. It is often more effective to compute the 
largest eigenvalues of the inverted reduced matrix. This inversion then transforms 
poorly separated eigenvalues into well-separated eigenvalues. Subspace iteration, 
often found in engineering packages, uses this transformation. Problems in which 
the desired eigenvalues are not smallest modes are efficiently solved by a Lanczos 
scheme with shift. 

If M is only a semi-definite matrix, a new problem is posed. The presence of rank 
deliciences in M means that the eigenproblem admits infinite eigenvalues. It also 
means that M induces only a semi-norm instead of a norm. 

Frequently, engineering models cause additional algebraic difficulties. One 
common engineering modelling requirement is the presence of “rigid-body modes,” 
Modelling a structure that is free to rotate or translate in its entirety, like a 
spacecraft, yields a stiffness matrix that is singular. That is, the resulting eigen- 
problem has multiple and exactly zero eigenvalues. Yet, it is often reasonable to 
find the natural modes even though both the stiffness and mass matrices are only 
semi-definite, for symmetric eigenproblems packages exist (or are being developed) 
which allow solution of most engineering problems. The difficulties which arise are 
discussed by Grimes et al. [SO]. 

Problems with damping or including forces which lead to non-Hermitian 
matrices become more and more of interest. For large-scale structures such as a 
space station, damped oscillations are of great interest. The solvers to be addressed 
to the non-symmetric eigenproblem exist, as is shown in this paper. Thus, many 
interesting and important questions can be analyzed. At this point we have to refer 
to the literature. 

C. Hydrodynamics 

The study of the dynamics of fluids or gases is the subject of hydrodynamics. The 
equations relate the density p, velocity v, and pressure p and read 

continuity: aP 
5 + V(PV) = 0, 

h 
momentum: P~=-vP+Pg> 



LARGE-SCALE COMPLEX EIGENVALUE PROBLEMS 53 

where g denotes the gravity force. For a viscous fluid the scalar pressure is replaced 
by the pressure tensor and stress-strain relations are incorporated. The limit of an 
incompressible fluid’, i.e., V . v = 0, is represented by the Navier-Stokes equation 

h av 
,=,+v.vv= -bp+vdv, 

P 

where v denotes the viscous coefficient and the gravity force is neglected. The 
density p is constant and taken to be unity. The pressure can be eliminated by 
taking the curl of Eq. (4.10). 

Very different phenomena including equilibrium, and turbulence are described by 
the Navier-Stokes equation. The applications in physics and engineering are 
manifold. Here, just two examples are discussed by the Orr-Sommerfeld problem 
for planar Poiseuille flow. 

Let u,, and p0 denote the velocity and pressure of an equilibrium solution to the 
incompressible Navier-Stokes equations. Then write u = u0 + u’ and p =pO +p’, 
where u’ and p’ are perturbations to the mean flow. If u’ and p’ are presumed small 
and quadratic terms are neglected, then (4.10) becomes 

~+u,.Vu+u.Vu,= -vp+vvu, (4.1 la) 

v.u=o, (4.11b) 

where the primes have been dropped. 
A simple stability problem of long-standing interest is flow in a channel. The 

mean flow is 
uo = (U,(Y), 0, 01, 

Uo(Y) = 1 -Y2, 

p,(x) = - f 2, 

where distance have been scaled by the half-channel width h, velocities by the centre 
line velocity U, = u,(O), and the Reynolds number R is given by 

R = u,fv. 

The stability of this flow is assessed by studying perturbations of the form 

where ~1, /?, and o are complex constants. 
The system is described by a dispersion relation between CI, fi, and o with R as 

a parameter. If four real quantities out of a, /I, and o are prescribed, then the dis- 
persion relation constitutes an eigenvalue problem for the remaining two real quan- 



54 W. KERNER 

tities. If tl and /I are fixed, real quantities, then o is the complex eigenvalue. When 
approached in this manner, the problem is one of temporal stability. If Im {o} > 0, 
then the corresponding mode grows in time and the mean flow will be disrupted. 
The equilibrium solution is then unstable if a growing mode exists for any real a 
and j?. An alternative approach to this problem is one of spatial stability. Here, o 
is real and fixed, and two relations are imposed upon c1 and fi to complete the 
specification of the problem. If Im{ a} < 0 or Im{P} < 0, then the mode grows in 
space. If such growing modes exist for any real w and for any orientations of the 
waves, then the flow is spatially unstable. 

Both the temporal and spatial stability formulations reduce the dispersion 
relation to a generalized eigenvalue problem. However, in the spatial version, the 
eigenvalue enters non-linear and hence this is a more difficult problem. The 
spatial stability has been examined by Bramley [81-821. Working in cylindrical 
coordinates (y + Y) and using simplifying assumptions leads to 

DV,+‘V,-av,=o, 
r 

DV,+aV,+Z=O, 

D’Z+fZ+z’Z-$Z+R(l-r’)aZ=O, 

(4.12) 

where the operator D denotes differentiation with respect to Y. Z denotes the 
vorticity. The boundary conditions are 

V,(O) = Z(0) = V,( 1) = V,( 1) = 0, (4.13) 

with the added condition that V,(O) must be finite. Equations (4.12k(4.13) are the 
velocity/vorticity formulation of the differential eigenvalue problem. The numerical 
scheme leads to the general eigenproblem Ax = IBx, where A and B are matrices 
of dimension n = 4(M+ 1) and the vector x contains the coefficients of the 
Chebyshev polynomials for V,, I’,, Z, and aZ, and M is the order of the expansion. 
The eigenvalue problem is solved by the QZ algorithm. Purely real eigenvalues as 
well as complex ones are found; the details of the solution depending on the value 
of R. Eigenvalues with positive real parts are associated with downstream distur- 
bances, while eigenvalues with negative real parts are associated with upstream 
disturbances. The disturbances with complex a are of oscillatory behaviour. Details 
are found in the paper of Bramley [Sl] and Bramley and Dennis [82]. 

The Orr-Sommerfeld equation for plane Poiseuille flow has also been studied by 
Bridges and Morris [83]. Again for a given radian frequency, the spatial stability 
is solved for two-dimensional disturbances, i.e., /I = 0. 

The non-linear eigenvalue problem is solved by two methods, namely by reduc- 
tion to a linear problem of larger dimension and, second, by solving a matrix 
system of the form D(a) x = 0 by evaluation of the determinant, det D = 0, using 
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FIG. 4.2. The first 10 members of the eigenvalue spectrum plotted in alpha space for w = 0.26 and 
R=6000. 

special factorization. The first 10 members of the eigenvalue spectrum are computed 
(see Fig. 4.2). The first eigenvalue has the value c1= 1.00047 -0.00086i and 
corresponds to a spatially unstable mode, whereas the higher modes are stable. The 
damped solutions yield a curve for the eigenvalues in the complex plane. The modes 
with increasing damping have increasing number of radial nodes. Such patterns are 
also found in dissipative MHD theory. It would be very interesting to discuss these 
solutions of the Orr-Sommerfeld equation with higher resolution. It is emphasized 
that the eigenfunctions could be expanded on a local basis and the resulting sparse- 
ness in the matrices be utilized. The Lanczos method or inverse iteration should 
yield accurate results very efficiently and small-scale perturbations can be studied 
for more complex geometries and flows. 

D. Plasma Physics 

A macroscopically neutral medium containing many interacting free electrons 
and ionized atoms or molecules, which exhibit collective behaviour owing to the 
long-range Coulomb forces, constitutes a plasma. This plasma state, which can be 
produced by sufficiently raising the temperature of a substance, is also called the 
fourth state of matter. Plasma can also be produced by photoionization and electric 
discharges. The presence of electric and magnetic fields gives rise to a large variety 
of phenomena. Most of the matter in the universe is in the plasma state. 

The objective of controlled thermonuclear fusion research in the laboratory is to 
derive energy on an economic basis from the fusion of light nuclei, such as 
deuterium and tritium. Such fusion reactions are also the source of energy in the 
interior of stars, such as the sun, and support-among other phenomena-life on 
Earth. In order to obtain a sufficient number of fusion processes in a high- 
temperature laboratory plasma with T> 10 keV (corresponding to a temperature of 
100 million degrees), the product of the particle density and the confinement time 
should exceed the value given by the Lawson criterion. The concept of magnetic 
confinement utilizes the fact that ions gyrate around magnetic field lines, i.e., 
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are tied to the field. to 
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The theory of linearized perturbations makes an expansion around such an equi- 
librium and linearizes the equations. This is then the place where dissipation is 
taken into account. ‘The justification for this procedure is given by estimating the 
time scales of interest. Let us begin with simple equilibria pertaining to laboratory 
fusion related plasmas. The tokamak is at present the most advanced reactor 
concept. 

In the tokamak device a toroidal current is induced in the plasma, which 
produces a poloidal magnetic field. Together with the toroidal field, this current 
yields an equilibrium and also heats the plasma. The principle of a tokamak is 
shown in Fig. 4.3. The simplest description neglects the toroidal curvature and 
treats the plasma as a straight cylinder with periodic boundary conditions at z = 0 
and z = L = 2nR,, where R, is the major radius of the tokamak; this is shown in 
Fig. 4.4. The ratio of the major and minor radii is called the aspect ratio A = R,/a. 
Further stratification with respect to 9 yields the slab model, which is a good 
approximation to the surface of stars. The equilibrium in cylindrical geometry is 
given by 

(4.23) 

With two profiles given, the remaining one is solved for. Usually, the longitudinal 
current is chosen, from which the poloidal field is found: 

The other quantity prescribed is the pressure, which is obtained from experimental 
data for density and temperature. The safety factor defined as 

q = rB,/RB, (4.24) 

vacuud vessel ma&tic main’field \ 

fiild line coil 
transformer 

FIG. 4.3. Tokamak schematic: A toroidal current is induced in the plasma, which acts as the second 
loop of a transformer. This current creates a poloidal magnetic field, which together with the main 
toroidal field establishes an equilibrium and which heats the plasma by ohmic heating. 
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FIG. 4.4. Straight approximation of a tokamak configuration 

measures the shear of the magnetic field lines. Alternatively, prescribing JZ and q 
then yields the pressure. 

The study of linearized motions has significantly contributed to the understand- 
ing of ideal and dissipative MHD plasma phenomena such as stability, wave 
propagation, and heating. The following ansatz is suitable for the perturbed 
quantities: 

f(r, 0, z, t) =f(r) exp(im 8 + ink z + Jr), (4.25) 

where 1 is the eigenvalue and m and n are the wave numbers of the perturbation. 
With k = 2x/L defining a periodicity length, a tokamak with large aspect ratio is 
simulated. The imaginary part of 1 corresponds to oscillatory behaviour, while a 
negative real part yields damping and a positive real part yields an exponentially 
growing instability. Owing to the simple geometry, the different Fourier modes in 
Eq. (4.25) decouple. 

With resistivity q, fluid-type viscosity p, gravity g, and thermal conductivity K, 
the equations for the perturbed quantities p, v, T, and b read 

AP = -V(P,V), (4.26) 

Jp,v= -V(~~T+T,p)+pg+(VxB,)xb+(Vxb)xB, 

+ p(dv + ;w. V), (4.27) 

Ip,T= -pov.VTo+(y-l)(-p,,T,V.v+VKVT), (4.28) 

Ab= -VxE=Vx(vxB-qoVxb). (4.29) 
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Here y denotes the ratio of specific heats and equals 5/3. The condition V. b = 0 is 
satisfied if B, is divergence-free. In one version of our code div b = 0 was used to 
eleminate bs if m # 0. For the general case, a vector potential is introduced by 

b=Vxa and E= -la+V@. (4.30) 

The freedom in the gauge can be used to set the potential @ or a specific compo- 
nent of a, e.g., a,, equal to zero. 

Note that no perturbation for the dissipation is taken into account. The equi- 
librium considered is a plasma-vacuum-wall system. To simulate such a system, it 
is only necessary to give the resistivity in the “vacuum” a sufficiently large value, 
and the density, temperature, and current small values. The boundary conditions at 
the wall are 

u,(r,) = 0, b,(r,) = 0, e,xE=O, 

dT/dr = 0 if K#O, e,x(Vxv)=O if p #O. 
(4.31) 

The stability analysis indicates what types of perturbations are dangerous, on 
what time scale these evolve, and what the maximum pressure contained by the 
field is. Typical instabilities of ideal MHD are sketchend in Fig. 4.5. Obviously, the 
instabilities are appropriately shaped to allow the plasma to reach a lower state of 

FIG. 4.5. Illustration of an WI = 0 sausage instability, an m = 1 kink instability, and an m = 2 elliptical 
deformation (from top to bottom) for a straight plasma cylinder. 
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energy. Usually, the perturbation follows the field line, i.e., k . B x 0. In our model 
this defines a singular surface when 

(4.32) 

With finite resistivity, the field is no longer frozen into the fluid. The resistive 
instabilities cause the plasma to break away from the magnetic field. Such tearing 
modes are responsible for causing the disruptive instabilities seen in many 
tokamaks. 

The addition of dissipation, such as resitivity, viscosity, or heat conductivity, 
might be expected just to reduce the growth rate of ideal MHD instabilities, since 
resistivity dissipates current, viscosity damps out sheared velocities, and heat con- 
ductivity reduces local thermal gradients. However, the addition of dissipation can 
produce new instabilities by removing constraints from the ideal model and, thereby, 
making states of lower potential energy accessible to the plasma. Owing to the large 
temperature in a tokamak, the resistivity is quite small. However, the perturbation 
only needs to break the field in a thin layer within the plasma. If this layer thickness 
were comparable to the radius of the plasma, the perturbation would only evolve 
on the resistive diffusion time scale. The perturbation takes into account resistivity 
in a small layer of width 6 N q’j3 or q2” and conpects to the ideal solution further 
out. The time scales for these instabilities is given by Re A = A, N y~‘/~ or q3” and 
is located between the ideal and resistive diffusion time scales. Equally interesting 
is the question what kind of waves can be sustained in a plasma. Let us first 
consider the homogeneous equilibrium with constant magnetic field, pressure, and 
density. Since this system is both time and spatially independent, the perturbation 
can be represented as 

f,(r, t) =fl exp( -i(ot- k-r), 

k=k.e,+k,,e,, 

where the field is in the z-direction and k is in the (y, z)-plane. Inserting this ansatz 
into the equations yields an algebraic system, and the condition that the determi- 
nant vanishes gives the dispersion relation 

w2=k2v2= II a d (4.33) 

co2 = ;k2( Vi + V;)( 1 + (1 -CC=)“*), (4.34) 

where 

4k2 V2 V2 ~==---us 
k= V; + Vi’ 
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Here V, denotes the Alfven speed and I’, the adiabatic sound speed: 

(4.35) 

(4.36) 

There are three branches to the dispersion relation with purely oscillatory 
behaviour, Im o = 0. The first branch is the shear Alfven wave. It is polarized so 
that the wave is transverse, be B,, = 0 = v. B, and k * b = 0 = k * v. This causes the 
field lines to bend. Plasma is carried with the magnetic perturbation by the 
E x B/B2 velocity. This mode is incompressible, producing no density or pressure 
fluctuations. The shear Alfven wave describes a basic oscillation between 
perpendicular plasma kinetic energy and perpendicular line-bending magnetic 
energy. 

The second branch corresponds to the fast magnetoacoustic wave c$ ( 202). 
Both the magnetic field and the plasma pressure are compressed. In the limit of 
small pressure and strong field one has 

c+(fq+kf) q. (4.37) 

The plasma motion is nearly transverse and most of the compression involves the 
magnetic field and not the plasma. 

The third branch of the dispersion relation corresponds to the slow 
magnetoacoustic wave 

(4.38) 

In the small pressure limit this mode reduces to the sound wave and is longitudinal. 
These three branches are seen in Fig. 4.6. The most unstable oscillations involve the 
shear Alfven wave; the fast and slow mode contribution is stabilizing and hence is 
small. 

Finally, we give estimates for the thermal velocity and the Alfven velocity for 
typical parameters (B- 40 kG, T- 2 keV, p = 1014 cmm3 and a = 100 cm): 

u,~ - 5 x lo7 cm/s, 

uA - 8 x lo* cm/s. 

The corresponding time scales are in the microsecond range: 

z -a/v,,=2x lo-%=2ps, th - 

z,=a/vA2. lO~‘s~O.l~s. 
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FIG. 4.6. Complete, ideal (q = 0) spectrum of the constant current equilibrium (v = 0 in Eq. (4.43)). 
The square of the eigenvalues (I = io) is plotted versus the safety factor with n = 1, m= -2, and k = 0.1. 
Three different branches occur, namely fast magnetoacoustic, Alfven, and slow magnetoacoustic waves. 
Negative values for w2 indicate exponentially growing instabilities. The entire spectrum is well resolved 
and no spurious eigenvalues due to numerical coupling of diffrent branches occur, i.e., no “pollution.” 

The quantities obtained from computations are normalized to the ideal Alfven 
velocity and ideal Alfven time. The resistive skin time across the plasma radius is 

The parameter S= r,JrA is called the magnetic Reynolds number and is of the 
order of lo6 to lo* for hot tokamaks. An excellent discussion of MHD theory is 
given in the books of Freidberg [66] and Bateman [67]. 

Next, the numerical procedure for the normal-mode analysis is described. The set 
of linearized dissipative MHD equations is solved by the finite-element method. A 
state vector w containing the perturbed density, velocity, temperature and magnetic 
field or potential is introduced: 

wT= (P, v, T b) or (P, v, T, a). (4.39) 

The set of equations is written in matrix form 

Rw = SW. (4.40) 

In order to reduce the order of derivatives and to obtain the weak form, we take 
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the inner product of Eqs. (4.40) with the weighting function v, which has to be 
sufficiently regular, and integrate over the plasma volume 

(Rw, v) = 1(Sw, v). (4.41) 

In the Galerkin method used here the adjoint function satisfies the same boundary 
conditions as w. The components of w are approximated by a finite linear combina- 
tion of local expansion or shape functions 

k = 1, 2, . ..) 8. (4.42) 
j=l 

Higher order elements are used, namely cubic Hermitian and quadratic finite 
elements. This introduces two orthogonal shape functions per interval, raising the 
order of the unknown to 2N, where N denotes the number of radial grid points. 
Since there is no prescription for the choice of the elements for each perturbed 
quantity, it has to be verified that a good discretization has been established. The 
error introduced in the differential equations through the approximation for w is 
orthogonal to every expansion function. The Galerkin method eventually leads to 
the general eigenvalue problem 

Ax = ,lBx, 

where the eigenvector contains the coefficients of the expansion functions. The 
matrix A is always non-Hermitian-in this formulation even for ideal MHD-and 
B is Hermitian and positive definite. A and B are real matrices but this is due to 
the simple equilibria and is not essential. The eigenvalue problem is solved by QR 
or QZ for all eigenvalues, by the non-symmetric Lanczos method for a set of eigen- 
values, and by inverse iteration for one eigenvalue at a time. The entire spectrum 
has been evaluated by each method. The Fourier finite-element expansion leads to 
a block-tridiagonal structure in the matrices with a block size b = 16 and a total 
dimension n = 16 x N. 

For two-dimensional tokamak equilibria different poloidal Fourier components 
couple and with M Fourier components the dimensions quickly become large, 

b=16xM, 

n=16xMxN, 

requiring out-of-core storage. 
The entire spectrum is now analyzed for tokamaks in straight cylindrical 

geometry on the basis of resistive MHD and astrophysical plasmas in slab 
geometry on the basis of MHD including heat conduction. A class of realistic 

581/85/l-5 
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tokamak-like equilibria with peaked current density j, and constant toroidal field 
is given by 

j=(r) =j, 1-f 
( )’ a2 ’ 

(4.43) 

B;= 1. 

The constant j, is adjusted to vary the value of the safety factor on axis, q(0); 
a is the plasma radius. The ratio of the safety factor on surface and on axis is 
q(a)/q(O) = v + 1. For our purpose it is sufficient to take a constant value for the 
resistivity 71~. In the units used ‘lo corresponds to the inverse of the magnetic 
Reynolds number. 

The first application is aimed, naturally, at testing the performance of the new 
method by reproducing known results from ideal MHD. The entire spectrum of a 
plasma column with constant toroidal magnetic field and constant toroidal current 
density is an interesting case. The equilibrium is specified by v =0 in Eq. (4.43), 
yielding a parabolic pressure profile and a constant safety factor q. 

In Fig. 4.6 the spectrum is displayed as a function of the safety factor. The square 
of the eigenfrequency (2 = io) is plotted, positive values of w2 corresponding to 
stable, purely oscillatory modes and negative values to exponentially growing 
unstable ones. Three parts of the spectrum can be clearly distinguished, namely the 
discrete fast modes, the Alfven modes, which for this equilibrium form a discrete set 
of modes, and the slow-mode continuum. If nq is sufficiently close to -m, the 
Alfven modes become unstable, as can be seen from Fig. 4.6, and for nq = -m there 
are infinitely many unstable modes. Our approach yields at this point as many 
instabilities as correspond to the entire Alfven class, namely i of the spectrum 
modes. This result holds for all mesh sizes. The spectrum presented is in complete 
agreement with that of Chance et al. [84], indicating that we can reproduce the 
spectrum without “pollution” [68, 85, 861, especially the marginal points, in agree- 
ment with analytical results. It is emphasized that our results are obtained from a 
non-self-adjoint operator in conjunction with cubic and quadratic finite elements, 
and those of Ref. [84] from a completely different self-adjoint operator in conjunc- 
tion with linear and piecewise constant elements. 

Resistive instabilities are studied lirst and then the stable part of the spectrum is 
addressed. With finite resistivity, the magnetic field is no longer frozen into the 
fluid. Such resistive instabilities are studied for realistic tokamak-like equilibria with 
peaked current density and constant toroidal field with v = 1 in Eq. (4.43), and 
hence q(a)/q(O) = 2. We concentrate on the m = 2 mode. For this monotonically 
decreasing pressure the unstable modes have purely real eigenvalues. 

The growth rate of the most unstable mode is plotted versus q(a) in Fig. 4.7a. If 
the wall is placed directly at the surface r = a, then the m = 2 tearing mode is 
unstable for 2.20 d q(a) d 4.0. If the wall is moved away from the plasma surface, 
the internal tearing mode is unstable as long as the q = 2 surface is located in the 
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FIG. 4.7. (a) Growth rate of the most unstable mode for a tokamak-like current profile (v= 1 in 
Eq. (4.43)) versus the safety factor on the plasma surface for ~7 = lo-’ and n = 1, m = -2, k = 0.1. The 
upper curve refers to the free boundary case r,/a = 1.5, and the lower curve to the fixed boundary r.+ = a. 
(b) Growth rates of the two most unstable modes for the same case on an enlarged scale. 
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plasma, and it becomes an external kink if the q= 2 surface is in the “vacuum” 
region. For a finite distance of the wall r,/a = 1.5 this kink becomes stable for 
q(a) < 1.61. These stability limits, obtained with the stability code of Kerner and 
Tasso [6], are indicated in the figure and are very accurately reproduced. For the 
internal tearing mode the growth rate becomes much smaller as q(a) approaches 
the value 2.20. Moreover, it is particularly worthwhile to take a closer look at these 
instabilities on an enlarged scale near the marginal point. Figure 4.7b displays the 
growth rate of the two most unstable modes. On this scale the eigenvalues of the 
higher modes .are located on the axis and are therefore omitted. The most unstable 
mode has the global structure for the perturbed field b, = irb, displayed in Fig. 4.8. 
This perturbation has a finite value at the singular surface. The normal component 
of the velocity ur = ru, is “more singular” and hence more localized around rs and 
is characterized by one radial node. For details we refer to Kerner et al. [87]. 

Overstable modes can occur if there is a locally increasing pressure, i.e., dp/dr > 0. 
An appropriate class of tokamak-like equilibria is defined in Ref. [58], with the 
parameter CI labelling the pressure gradient. The results are displayed in Fig. 4.9. In 
the force-free equilibrium (CI = 1; dp/dr = 0) the only instability is the unstable tear- 
ing mode. If a assumes smaller values, c( < 1, this mode becomes slightly stabilized, 
but a second unstable mode emerges from the origin. With increasing pressure 
gradient, i.e., with decreasing values for a, the growth rate of the most unstable 
mode decreases and that of the second most unstable mode increases until both 
modes merge and an overstable mode evolves. This happens for LX< 0.868. If LX is 
further decreased, the growth rate of this overstable mode becomes smaller. The 
oscillatory frequency, however, strongly increases. For u -C 0.31 the mode becomes 
stable with still finite oscillatory behaviour. These results are presented in the 
papers of Kerner [34] and Kerner et al. [58]. 

r/a r/a 
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 

FIG. 4.8. Normal component of the perturbed magnetic field b, = rb, and of the velocity v, = ru, for 
q = 10m9 in arbitrary units. The singular surface at r, = 0.5a is indicated. 
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FIG. 4.9. Overstable modes for a tokamak-like equilibrium with varying pressure gradient. The 
values of a, which governs dp/dr, are given. The parameters are n = 2 x lo-‘, n = 1, m = - 2, and k = 0.2. 
Re(l) denotes the growth rate, and Im(I.) the oscillation frequency. For decreasing values of a two 
unstable modes merge to yield a complex eigenvalue for a < 0.868. 

Grimm et al. [88] study the resistive interchange modes at finite pressure 
numerically. In Fig. 4.10 the roots of the resistive mode dispersion relation are dis- 
played as a function of S = q - ‘. On the heart-shaped branch, for large resistivity, 
two purely growing modes exist. These coalesce as q is reduced, become overstable, 
and finally stabilize at some critical q. 

We now discuss the influence of resistivity on the three branches of the spectrum, 
namely, the fast and slow magnetoacoustic and the Alfven waves. The basic features 
of these waves have been described in the ideal homogeneous case. It is seen in 
Fig. 4.6 that the fast modes form a point spectrum with accumulation point at 
infinity I + coi In a system of finite size the boundary conditions yield discrete 
values for k, = w/a, v = 1,2, . . . . In the cylindrical model the eigenvalues are given 
by zeros of the derivatives of Bessel functions Im(J) = Y,, “, v = 1, 2, . . . . 

Note that the wave numbers m and n, Eq. (4.25), are fixed, and k, = k, + co. 
Since the fast magneto-acoustic branch is formed by point eigenvalues in ideal 
MHD, low resistivity is expected to lead to small damping; this damping is the 
more pronounced the larger k,, i.e., local gradients 6 -k, - v, becomes. This is 
indeed found, as seen in Fig. 4.1 la. 

For values of q smaller than 10e3, the eigenvalue curve is identical, the scale of 
- Re(l) being proportional to v]. Note that the chosen grid N, = 55 yields 220 fast 
modes. For q > 10P3, however, the eigenvalues follow a completely different pattern 
as is shown in Figs. 4.1 lb-d. A local maximum for Im(1) is reached for increasing 
k,, i.e., an increasing number of radial nodes v. The oscillatory frequency can then 
be drastically reduced and increases again for smaller damping. The eigenvalue 
curve intersects and eventually follows the imaginary Iz axis with only small damp- 
ing. For the homogeneous case the corresponding dispersion relation is given by a 
fourth-order polynomial in A with exactly the solutions presented. For an 
inhomogeneous plasma with a strong toroidal field I B,/B* I > 1 the same solutions 
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FIG. 4.10. Eigenvalues I = -io of resistive perturbations for a toroidal (R/u = lo), finite pressure 
equilibrium as a function of S= q-‘. The arrows indicate the locus of the root as q is decreased. 

are found. The interesting aspect of our result is the fact that for small dissipation 
q r 10 ~ 3 and a reasonably radial structure of the perturbation k, N v with v z 30 to 
50 the damped wave solution is completely different from the ideal, dissipation-free 
solution. This might be quite important, in general, for resonance-type questions. 
The ideal Alfven branch is also given by Bessel functions with an increasing number 
of radial nodes, v; the eigenvalues are degenerated for the homogeneous case 

as is seen in Fig. 4.6 for nq = 1.90 and 2.10. 
This figure also displays that the instabilities relate mainly to the Alfven modes 

and pop out of this branch. For a constant field the resistive case can also be 
analytically solved and yields the dispersion relation by a quadratic expression 

/I = $( -q(k* +j;,,) f (rj*(k’ +j;,J* - 4k*v2,)“‘), (4.44) 

where j,,, denotes the u th zero of the Bessel function of order m. 
These eigenvalues lie on a half-circle emerging from the ideal Alfven frequency 

and branching on the negative real axis with zero and infinity as accumulation 
points. This behaviour is numerically confirmed for all values of q. Part of this circle 
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is found in Fig. 4.12. For an inhomogeneous plasma the ideal Alfven spectrum 
behaves completely differently and forms a continuum, where Im(,I) assumes all 
values of the local Alfven frequency, i.e., ,I = ik - B/p = ik,,(r) uA(r), given by the 
equilibrium profiles. 

The corresponding eigenfunctions have a logarithmic singularity for u, and a l/x 
singularity for ug. Mathematically, this follows from the corresponding second- 
order differential equation in r, where the coefficient in front of the highest 
derivative vanishes. These modes are still well represented by the finite-element dis- 
cretization chosen. Dissipation has a subtle influence on these continua. The sim- 
plest equilibrium which can be treated mathematically is that with a linear profile. 
First, the numerical evidence is presented The equilibrium is chosen with a linear 
dependence of the Bz field on the radius, a quadratic dependence for the pressure 
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FIG. 4.12. The resistive Alfven spectrum for q = 10m4 and N,= 50 intervals computed by the QR 
algorithm. All eigenvalues are corect, i.e., converged. The solid bar on the imaginary axis denotes the 
ideal Alfven continuum (0.40 < Im(l,,,) < 2.80). Pressure set to zero. 



LARGE-SCALE COMPLEX EIGENVALUE PROBLEMS 71 

and constant density p and leads to the ideal (u ~0) Alfven frequency (see 
Ref. [32]) iii, = I, = ikB,/& = iO.40( 1 + 6r) ranging from iO.40 (r = 0) to i2.80 
(r = 1.0). 

With finite resistivity, all the modes are damped. The QR algorithm can only be 
applied up to 61 radial points with a matrix dimension of do 900. The eigenvalues 
for a case with q = 1 x lop4 are displayed in Fig. 4.12. In the case of zero resistivity 
the Alfven modes from a continuum, also indicated in Fig. 4.12, with singular eigen- 
functions. Especially interesting is the question of what happens for small resistivity, 
i.e., in the limit q -+ 0. The results for smaller resistivity are quite puzzling; Fig. 4.13 
shows the spectrum for the same mesh as in Fig. 4.12 but with smaller q. With 
decreasing resistivity, the location of the eigenvalues in the complex d plane 
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. 
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FIG. 4.13. The resistive Alfven spectrum for q = 2 x 1O-5 and N, = 50 intervals computed by the QR 
algorithm. Most of the eigenvalues are false owing to insuffcient numerical resolution. The solid bar on 
the imaginary axis denotes the ideal Alfven continuum (0.40 < Im(&,) < 2.80). Pressure set to zero. 



72 W. KERNER 

(a) 

. 

. 
. 

. . . . 
. *. - . * - . . . 

. . 
. 
. 

. 

. . . . . . . . . . . . . . P 

- 2.0 - 10 0 
Re h 

Imh 

Im A 
30 

!O 

0 

1 

. . Lo 
I 

-20 -1 0 0 

Reh 

FIG. 4.14. The resistive Alfven spectrum. The solid bar on the imaginary axis denotes the ideal 
Alfven continuum (0.40< Im(l,,)<2.80), pressure set to zero: (a) For ~~2 x 10e5 and N= 312 
intervals (d= 3742), successively computed by inverse vector iteration. All eigenvalues are correct, i.e., 
converged. (b) For n = lo-’ and N= 1002 intervals (d= 12010), successively computed by inverse vector 
iteration. Outside the region indicated all eigenvalues are converged. 
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drastically changes. On the contrary, analytical results suggest,that in the limit of 
vanishing q the eigenvalues lie on prescribed curves [89,90]. 

Numerical convergence is examined first. It is found that numerically stable 
curves are obtained with sufficiently many grid points. In Fig. 4.14 the spectrum is 
displayed for q= 2.0 x 10e5, the same value as in Fig. 4.13, but computed by 
applying inverse vector iteration using 313 mesh points. Comparison of the 
converged results of Figs. 4.12 and 4.14 indeed reveals that the eigenvalues lie on 
identical curves. The eigenfunctions have an increasing number of radial nodes 
v = 1, 2, 3, . ..) with v = 1 closest to the ideal continuum. The upper (lower) line of 
the triangle corresponds to eigenfunctions with oscillations near the boundary (near 
the origin). The more oscillations there are in the eigenfunctions, the stronger the 
damping is. At the branch point the oscillations occur at the centre and vanish at 
the end points, and further along the eigenvalue curve these oscillations extend over 
the entire radius. Figure 4.15 shows three eigenfunctions for three diffeent eigen- 
values. Purely damped modes emerge from a second branch point on the negative 
real axis of the 1 plane. 

The eigenfunctions are Bessel function-like with practically constant amplitude 
but an increasing number of radial nodes away from this branch point towards the 
two accumulation points 1= 0 and A= - co. If the numerical resolution is not good 
enough, completely false results are obtained for normal modes with eigenvalues 
between the two branch points-like those shown in Fig. 4.13. Adequately 
representing both the radial oscillations and the amplitude modulation requires a 
much liner grid than that for resolving the purely damped modes. Only with the 
reported tine grids of NE 300 is one able to understand the numerical results near 
the branch points. The smaller the resistivity, the more eigenvalues lie on the curve, 
but the curve itself becomes independent of q in the limit q + 0. The ideal (q = 0) 
Alfven continuum is approximated only at the two end points in the limit of r] + 0 
by modes where the eigenfunction is peaked in a small layer at r = 0 and r = 1.0. 
This layer width 6 decreases with 4 as 6 N q113. Figures 4.15a and d display the 
eigenfunctions of two cases with almost the same eigenvalue but for two different 
values of the resistivity. The structure of the eigenfunction is similar, but for smaller 
resistivity more radial oscillations occur in a finite radial domain. 

The result for larger resistivity reveals that each mode follows its own path in the 
eigenvalue plane. Only for asymptotically small q do these curves become identical 
(see Fig. 4.16). The next question is how many more radial grid points are required 
if the resistivity is further reduced. The out-of-core solver allows up to 
N, = 10 000 grid points. It is found, however, that the triple point now imposes an 
upper limit on the tractable q-value, which is close to r] = lo-‘. The bifurcation of 
the curve there requires techniques other than just increasing the mesh size. This is 
not further pursued. 

The analytical solution is based on the WKBJ method, where the eikonalf= e@‘& 
with E = rf112 is introduced, see Pao and Kerner [89] and Kerner et al. [90]. This 
function @ is continued into the complex plane and the anti-Stokes lines have to 
be found. These solutions therefore get very complicated for non-monotonic 
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FIG. 4.15. Normal component of the velocity u1 =ru, computed by inverse vector iteration corre- 
sponding to the eigenvahte, pressure set to zero: (a) 1= -0.27 + i2.33 for q = 2 x 10e5, which is the 
fourth mode of he upper branch; (c) I = -0.63 + il.44 for n = 2 x 10m5, which is the tenth mode of the 
lower branch; (b) I = - 1.57 + i0.38 for q = 2 x 10e5, which is the last mode with oscillation, i.e., finite 
imaginary part; (d) A= 0.27 + i2.32 for r) = 2 x 10m6, which is the twelfth mode of the upper branch. 
Note that the real and imaginary parts of the eigenfunctions have similar structures and equal 
magnitudes. 
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FIG. 4.16. Frequency of the tirst two modes from the uppermost branch for diffeent q ranging from 
q = lo-’ (top close to the imaginary axis) to q= lo-* (bottom close to the real axis). Only for small 
resistivity do the eigenvalues lie on identical curves. Pressure set to zero. 

profiles. The numerically computed solution is so accurate that the scaling of these 
analytical solutions can be checked and accurately reproduced. Thus, a very fruitful 
collaboration between analytical and numerical aspects has been established. 

The slow modes also form a continuum in ideal MHD. In the constant current 
profile, where the Alfven spectrum is degenerated to one point, a slow mode 
continuum occurs, as is seen in Fig. 4.6. With finite resistivity this continuum again 
disappears and eigenvalue curves are similar to the Alfven modes. If the two ideal 
continua overlap, these curves just overlap as is shown in Fig. 4.17. The interference 
of the two branches is very localized and appears analytically in higher order with 
respect to eta. New branches which approximate specific points inside the ideal con- 
tinuum appear for local extrema of the ideal frequencies oA(r) or us(r). These ideal 
discrete Alfven modes play an important role in Alfven wave heating. These modes 
are proposed to produce a good coupling for the power emitted by the antenna to 
the plasma [93]. 

The spectrum of resistive MHD is understood well and in great detail. A com- 
pletely new field was given in the model of the non-adiabatic astrophysical plasma 
(q = 0; K # 0) in slab geometry. There, all results were first derived numerically and 
then interpreted by applying analytical methods. Now the cusp (slow) branch is of 
special interest. The Alfven branch decouples, so that the Alfven continuum remains 
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FIG. 4.17. The complex spectrum of the Alfven and slow mode branch for an equilibrium with linear 
profiles and ~=6xlO-~. 

for finite heat conductivity rc. The ideal cusp continuum breaks up for finite rc, as 
should be expected from the previous results. In the homogeneous case, which can 
also be treated analytically, yielding a polynomial-type dispersion relation for 1, the 
slow modes emerge from the cusp frequency (4.38), where we obtain finite damping 
and return to the imaginary axis at the isothermal frequency 

0; = P&lo + Bi) co:, . (4.45) 

Since of = CO: when y = 1, wi is called the isothermal slow frequency. With 
increasing k,, i.e., with increasing number of radial nodes, the eigenvalues A,, 
v = 1,2, . . . . co, describe a curve from 1= io, to A = io,. The curve itself is independ- 
ent of IC. In terms of physics, these perturbations have the tendency to make the 
plasma isothermal (y = 1). Such a curve is shown in Fig. 4.18. By choosing different 
values for K only the point density on this curve varies. The inhomogeneous case 
with a linear temperature profile, 

T=l+bz, with B a constant, 

P = l/T, 

B.= L&e,, 

(4.46) 
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FIG. 4.18. The slow magnetoacoustic mode spectrum of an uniform equilibrium state with K =O.OOl 
( + ) and K = 0.01 (0). The mode with n = 3 for = 0.01 and with n = 7 for K = 0.001 are indicated in order 
to illustrate the effect of K on the location of the mode; n denotes the number of radial nodes in the 
eigenfunction. 

yields a surprise, as shown in Fig. 4.19. The ideal cusp continuum disappears and 
a new dissipative continuum, called the isothermal continuum, appears. 

As the results for the homogeneous case imply, there is an accumulation point for 
k, --t co inside the isothermal continuum, which poses a severe numerical problem. 
The complete discussion of these findings is given in the paper of Hermans et 
al. [91]. If gravity is taken into account, overstable modes appear. The important 
aspect of this result is that these overstable modes are connected with the isother- 
mal continuum and not with the Alfven modes as was previously expected, as 
shown in Fig. 4.20. This result should change the interpretation of the physics 
taking place in Ap stars. The complete discussion of these instabilities with 
oscillatory behaviour will be given in the paper of Hermans et al. [92]. 

The spectrum of dissipative MHD has been completely mapped out by numerical 
techniques. Especially, inverse iteration is a very reliable and efficient method. It has 
become evident that very high resolution is necessary, which results in large matrix 
dimensions d> 104. The analysis for 2D equilibria will immediately lead to such 
large systems. Then there is a great demand for a solver which preserves the sparse- 
ness-at least the bandwith-and which gets a subset of the spectrum. We propose 
the Lanczos algorithm for this purpose. We applied a non-symmetric Lanczos 
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FIG. 4.20. The overstable modes for a nonuniform equilibrium state with K = 10 m9, A4 = 0.000022, 
and gravity g (#O), displayed with a scalefactor S = 10e2 for the growth rate Re 1. 
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scheme to resistive MHD and were able to obtain entire branches in one computer 
run, see Section 3. 

Finally, we address the physical and mathematical interpretation of the 
computed spectra. Point eigenvalues of ideal MHD become complex. Usually, 
eigenvalue curves in the complex A-plane occur where the eigenfunctions have an 
increasing number of radial nodes. Important is the result that quite complicated 
behaviour can evolve if k . q N 1. On the contrary, for matrix elements given at 
random, the eigenvalues are scattered all over the complex plane. The solutions of 
partial differential equations exhibit more structure-as is shown for MHD. 
Continua of ideal MHD are usually lost by introducing finite dissipation. Although 
these singular modes are not physical themselves, they play an important role for 
describing physical effects such as Alfven wave heating by phase mixing. It is the 
completeness of this function space which allows a physical mode to be represented 
by taking the integral over these eigenfunctions. The question arises therefore, 
whether the dissipative spectrum is again complete. The evidence is that this 
completeness is lost for the resistive Alfven spectrum-although no proof has yet 
been given. The higher order derivatives destroy the zero coefficient in front of the 
second derivative; the solution becomes smoother and singular eigenmodes are 
approximated only at the end points close to the walls. More branches ending 
inside the continuum exist if the equilibrium profiles are only piecewise linear with 
corresponding jumps in the first derivatives. This discontinuity then produces an 
almost singular mode inside the plasma. The case of a local extremum in the 
equilibrium function W~(T) at r = re also produces a new branch. Since the resistive 
MHD model is based on certain scaling assumptions, it may be possible to 
introduce more normal modes by appropriately enlarging the model. 

Please note that all the physics is still contained in the model, even if the normal- 
mode picture does not reveal all of it. The Alfven wave heating is correctly 
described in resistive MHD. 

5. CONCLUSIONS 

The results presented in the applications yield clear evidence that the complete 
spectrum of normal modes can be computed for non-Hermitian operators. These 
calculations considerably increase the physical understanding. The point eigen- 
values of idealized theory can be significantly changed by dissipation; ideal 
continua disappear. New branches of normal modes occur in the dissipative model, 
which can connect to overstable modes. 

It is now possible to give the following general resume of the complex eigenvalue 
problem. Let us recall the basics of the theory first. General matrices allow singular- 
value decomposition by means of unitary matrices. Furthermore, the Schur decom- 
position exists. Whereas the matrices of the symmetric eigenproblem can always be 
diagonalized in a numerically stable manner, the non-symmetric eigenproblem 
yields intrinsic obstacles. The most general form that a general matrix can be put 

581/85/l-6 
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into is the Jordan canonical form. For defective matrices this Jordan block struc- 
ture is very difficult to determine numerically. In such a case additional work, both 
mathematical and numerical, is necessary to improve numerical stability. Possibly, 
straightforward evaluation yields sufficient knowledge to correct the solution sub- 
sequently. The author, well aware of this fundamental problem, has not yet come 
across this difficulty. Thus, the recommendation to proceed with the practical 
approach and to deal with defective matrices when really necessary is reasonable. 
If the matrices are assumed to be non-defective, their eigenvalues can be computed. 
Almost all methods of obtaining all eigenvalues first transform the matrices to 
Hessenberg form. For large-scale problems vector iteration, especially inverse 
iteration, Lanczos schemes, and Rayleigh quotient iteration are suitable and highly 
recommended. 

Not much has been said so far about the appropriate numerical discretization of 
systems of partial dilrerential equations. A badly chosen discretization will produce 
only bad approximation of the spectrum. It is possible to approximate specific 
eigenvalues well by using sufficiently many grid points, but at the same time new 
eigenvalues are introduced which are only poorly converged. This feature is called 
“spectrum pollution” [SS]. A good discretization should yield a good uniform 
approximation for the entire computed spectrum to the correct spectrum. This has 
to be checked for each problem. Only for Hermitian operators is the “pollution- 
free” numerical approximation ensured by mathematics, e.g., by Rappaz [S6] for 
ideal MHD, see also Gruber and Rappaz [68]. The property that small changes in 
the matrix elements yield small changes in the spectrum holds for Hermitian 
matrices but not for general matrices. 

This fact also explains the difficulties in obtaining an accurate numerical 
approximation; especially, the debugging of the code is sometimes quite tedious. 
Inspection of the eigenvectors indicates where errors in the code are possibly 
located. Application of the QR and QZ algorithms, which compute all eigenvalues, 
is very helpful for testing. On a vector computer matrices with dimension of about 
lo3 are routinely solved and it appears that somewhat larger systems will be 
tractable in the near future. In these solvers accuracy can be a problem, especially 
if the discretization is still not optimal. 

In most applications the matrices appear in block-tridiagonal form. Then inverse 
iteration is found to be an extremely efficient and accurate scheme. If entire 
branches of the spectrum are solved for, this method has to be repeatedly applied 
in conjunction with many appropriate shifts. In the MHD problems analyzed the 
matrices do not have the special properties necessary for iterative solution of 
the systems of linear equations, e.g., in the form of relaxation schemes. This 
unfavourable numerical condition is given for many or most non-symmetric 
problems. So far these linear systems are solved by LU factorization by means of 
Gauss elimination with pivoting and by subsequent forward and backward sub- 
stitution. Then the sparseness within the band structure is lost, but the overall 
block-tridiagonal pattern is preserved. If the matrices, even in band-storage mode, 
do not lit into the fast memory of the computer an out-of-core version of this 
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algorithm is necessary. Then the amount of data which can be processed is 
increased by several orders of magnitude, but the overall optimization of the code 
becomes increasingly difficult. The version of Kerner et al. [32-341 is improved 
with respect to the ratio of elapsed time to computing time by performing I/O and 
computation simultaneously. However, the overall vectorization is deteriorated 
since the algorithm is now composed of small pieces. If sufficient memory is 
available, such as on a CRAY-2, the original in-core version is more efficient. 
Another version of this algorithm optimized with respect to CPU is therefore being 
developed at present. 

The Lanczos algorithm-a version with no orthogonalization has been success- 
fully implemented-is suitable for computing relevant parts of the spectrum. In con- 
junction with appropriate shifts complete branches have been evaluated. Since for 
large systems the LU factorization takes most of the CPU time, this scheme is more 
efficient than inverse iteration. Inverse vector iteration, on the other hand, is always 
more accurate. These two methods will thus be jointly used and extended for 
solution of 2D problems. In dissipative MHD the corresponding matrices have 
dimensions of lo4 to lo’, but are block-tridiagonal. 

The most efficient scheme with respect to CPU time is the Rayleigh quotient 
iteration, usually applied in the form of Davidson’s algorithm. Since the work 
required for solution of the correspoding subsystems is quite small, the limitation 
is given by the feasibility of matrix-vector multiplications. Owing to the fact that 
the original sparseness is fully preserved, the matrix dimensions can become really 
large. This scheme is widely used in quantum mechanics. The computed eigenvalues 
and eigenvectors are often fed back into a different part of the computation. The 
eigenvalue problem is then solved many times. 

The location of eigenvalues can be established for Hermitian eigenproblems by 
means of Sylvester’s theorem. If the LU factorization is computed, the number of 
eigenvalues within a given real interval is easily found by bisection. The corre- 
sponding information, e.g., the inertia of a matrix, is difficult to establish for general 
matrices-at least only at a high computing cost. The unstable eigenmodes are 
easily found by an initial-value formulation. It has been shown that the numerically 
stable implicit time advance is quite similar to the scheme of inverse vector itera- 
tion. It is thus quite simple to change a normal mode code into an initial-value 
code. The same holds if the forced problem is to be solved. If the code and the 
routines are organized in modular form, many different problems can be solved by 
using the same modules. The present-day supercomputers strongly support direct- 
solution techniques involving large-scale matrix computation. This makes, for exam- 
ple, implicit schemes for initial-value codes very attractive. It is thus desirable to 
have access to highly optimized linear algebra subroutines, especially when specific 
sparseness structures are taken into account. The optimum in this respect is clearly 
not yet reached-or not reached in most computing centres. Some evidence of 
improvement in the CPU performance by a factor of two to four by relatively 
simple recording of EISPACK or LINPACK routines was given in Section 3.D. 
Given the high costs of the hardware, it is very surprising that the best software is 
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not available in most cases. Spending more money on optimized software would 
considerably increase the computing capacity. The corresponding increase of overall 
CPU performance is a factor of between two and live-in any case worth the effort. 

In the near future another significant increase in computing power will be 
reached by multi-processor computers. Especially in conjunction with improved 
iterative methods, such as multi-grid techniques, accurate numerical solution of 
most three-dimensional problems becomes feasible. The numerical solution of large- 
scale complex eigenvalue problems will greatly benefit from this development. It has 
been shown in this article that many significant problems in quantum mechanics, 
engineering, fluid dynamics, and plasma physics belong to this branch of computa- 
tional physics. 

It is greatly hoped that this article will stimulate future thorough analysis of the 
spectra of linearized motion for three-dimensional dissipative systems such as occur 
in physics and engineering. The following points, certainly, deserve further discus- 
sion: The question of the completeness of the eigenfunctions of non-Hermitian 
systems, the treatment of defective matrices, the construction of schemes which 
determine all the eigenvalues in some specified region of the complex plane, and the 
increase of efficiency for large systems. Possibly, the efficiency is increased by com- 
bining different methods to supplement each other and by tuning them to computer 
architecture. 
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